玉樹市重點中學中考四模數(shù)學試題及答案解析_第1頁
玉樹市重點中學中考四模數(shù)學試題及答案解析_第2頁
玉樹市重點中學中考四模數(shù)學試題及答案解析_第3頁
玉樹市重點中學中考四模數(shù)學試題及答案解析_第4頁
玉樹市重點中學中考四模數(shù)學試題及答案解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

玉樹市重點中學中考四模數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.把拋物線y=﹣2x2向上平移1個單位,再向右平移1個單位,得到的拋物線是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣12.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側(cè)C.當時,的值隨值的增大而減小 D.的最小值為-33.如圖是二次函數(shù)的圖象,有下面四個結(jié)論:;;;,其中正確的結(jié)論是

A. B. C. D.4.下列計算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b25.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①abc<0;②2a+b=0;③b2-4ac<0;④9a+3b+c>0;⑤c+8a<0.正確的結(jié)論有().A.1個 B.2個 C.3個 D.4個6.如圖,等邊△ABC的邊長為4,點D,E分別是BC,AC的中點,動點M從點A向點B勻速運動,同時動點N沿B﹣D﹣E勻速運動,點M,N同時出發(fā)且運動速度相同,點M到點B時兩點同時停止運動,設(shè)點M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.7.的相反數(shù)是()A. B.- C. D.-8.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.9.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點B的直線折疊這個三角形,使頂點C落在AB邊上的點E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm10.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC和△EDB中,∠C=∠EBD=90°,點E在AB上.若△ABC≌△EDB,AC=4,BC=3,則AE=_____.12.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.13.如圖,在梯形ABCD中,AD∥BC,∠A=90°,點E在邊AB上,AD=BE,AE=BC,由此可以知道△ADE旋轉(zhuǎn)后能與△BEC重合,那么旋轉(zhuǎn)中心是_____.14.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.15.如圖,半徑為5的半圓的初始狀態(tài)是直徑平行于桌面上的直線b,然后把半圓沿直線b進行無滑動滾動,使半圓的直徑與直線b重合為止,則圓心O運動路徑的長度等于_____.16.如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點(Ⅰ)AB的長等于__(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________17.如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸正半軸于點E,雙曲線y=(x<0)的圖象經(jīng)過點A,S△BEC=8,則k=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數(shù)的表達式;直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?19.(5分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=mx與y=n(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.20.(8分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結(jié)果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)21.(10分)求拋物線y=x2+x﹣2與x軸的交點坐標.22.(10分)如圖是根據(jù)對某區(qū)初中三個年級學生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進行隨機抽樣調(diào)查,并繪制了下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖(每人必選一種讀物,并且只能選一種),根據(jù)提供的信息,解答下列問題:(1)求該區(qū)抽樣調(diào)查人數(shù);(2)補全條形統(tǒng)計圖,并求出最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角度數(shù);(3)若該區(qū)有初中生14400人,估計該區(qū)有初中生最喜歡讀“名人傳記”的學生是多少人?23.(12分)從2017年1月1日起,我國駕駛證考試正式實施新的駕考培訓模式,新規(guī)定C2駕駛證的培訓學時為40學時,駕校的學費標準分不同時段,普通時段a元/學時,高峰時段和節(jié)假日時段都為b元/學時.(1)小明和小華都在此駕校參加C2駕駛證的培訓,下表是小明和小華的培訓結(jié)算表(培訓學時均為40),請你根據(jù)提供的信息,計算出a,b的值.學員培訓時段培訓學時培訓總費用小明普通時段206000元高峰時段5節(jié)假日時段15小華普通時段305400元高峰時段2節(jié)假日時段8(2)小陳報名參加了C2駕駛證的培訓,并且計劃學夠全部基本學時,但為了不耽誤工作,普通時段的培訓學時不會超過其他兩個時段總學時的,若小陳普通時段培訓了x學時,培訓總費用為y元①求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;②小陳如何選擇培訓時段,才能使得本次培訓的總費用最低?24.(14分)解方程:xx+1+2

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

∵函數(shù)y=-2x2的頂點為(0,0),∴向上平移1個單位,再向右平移1個單位的頂點為(1,1),∴將函數(shù)y=-2x2的圖象向上平移1個單位,再向右平移1個單位,得到拋物線的解析式為y=-2(x-1)2+1,故選B.【點睛】二次函數(shù)的平移不改變二次項的系數(shù);關(guān)鍵是根據(jù)上下平移改變頂點的縱坐標,左右平移改變頂點的橫坐標得到新拋物線的頂點.2、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.3、D【解析】

根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當時,由圖像可知此時,即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關(guān)系,注意用數(shù)形結(jié)合的思想解決問題。4、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D5、C【解析】

由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】解:拋物線開口向下,得:a<0;拋物線的對稱軸為x=-=1,則b=-2a,2a+b=0,b=-2a,故b>0;拋物線交y軸于正半軸,得:c>0.∴abc<0,①正確;2a+b=0,②正確;由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,故③錯誤;由對稱性可知,拋物線與x軸的正半軸的交點橫坐標是x=3,所以當x=3時,y=9a+3b+c=0,故④錯誤;觀察圖象得當x=-2時,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正確.正確的結(jié)論有①②⑤,故選:C【點睛】主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的表達式求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.6、A【解析】

根據(jù)題意,將運動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點D到AB距離為,當0≤x≤2時,y=;當2≤x≤4時,y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點睛】本題為動點問題的函數(shù)圖象,解答關(guān)鍵是找到動點到達臨界點前后的一般圖形,分類討論,求出函數(shù)關(guān)系式.7、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.8、D【解析】

連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.9、A【解析】試題分析:由折疊的性質(zhì)知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質(zhì)知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點評:本題利用了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.10、D【解析】

如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點睛】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內(nèi)角互補.解決問題的關(guān)鍵是作平行線.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】試題分析:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1.考點:全等三角形的性質(zhì);勾股定理12、1.【解析】過點B作BE⊥x軸于點E,根據(jù)D為OB的中點可知CD是△OBE的中位線,即CD=BE,設(shè)A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結(jié)論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設(shè)A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.13、CD的中點【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì),其中對應(yīng)點到旋轉(zhuǎn)中心的距離相等,于是得到結(jié)論.【詳解】∵△ADE旋轉(zhuǎn)后能與△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D與E,E與C是對應(yīng)頂點,∵CD的中點到D,E,C三點的距離相等,∴旋轉(zhuǎn)中心是CD的中點,故答案為:CD的中點.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),關(guān)鍵是明確旋轉(zhuǎn)中心的概念.14、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.15、5π【解析】

根據(jù)題意得出球在無滑動旋轉(zhuǎn)中通過的路程為圓弧,根據(jù)弧長公式求出弧長即可.【詳解】解:由圖形可知,圓心先向前走OO1的長度,從O到O1的運動軌跡是一條直線,長度為圓的周長,然后沿著弧O1O2旋轉(zhuǎn)圓的周長,則圓心O運動路徑的長度為:×2π×5=5π,故答案為5π.【點睛】本題考查的是弧長的計算和旋轉(zhuǎn)的知識,解題關(guān)鍵是確定半圓作無滑動翻轉(zhuǎn)所經(jīng)過的路線并求出長度.16、取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【解析】

(Ⅰ)利用勾股定理計算即可;(Ⅱ)取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【詳解】解:(Ⅰ)AB==,故答案為.(Ⅱ)如圖取格點P、N(使得S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.故答案為:取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【點睛】本題考查作圖﹣應(yīng)用與設(shè)計,線段的垂直平分線的性質(zhì)、等高模型等知識,解題的關(guān)鍵是學會利用數(shù)形結(jié)合的思想思考問題,屬于中考常考題型.17、1【解析】

∵BD是Rt△ABC斜邊上的中線,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴∴AB?OB=BC?OE,∵S△BEC=×BC?OE=8,∴AB?OB=1,∴k=xy=AB?OB=1.三、解答題(共7小題,滿分69分)18、(1)m=8,反比例函數(shù)的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】

(1)求出點A的坐標,利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.19、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結(jié)論;②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結(jié)論;(2)先確定出B(1,m4),進而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數(shù)為y=4x∴B(1,1),當y=2時,∴2=4x∴x=2,∴A(2,2),設(shè)直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點P是線段BD的中點,∴P(1,3),當y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當四邊形ABCD是正方形,∴PA=PB=PC=PD,(設(shè)為t,t≠0),當x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點D的縱坐標為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.20、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】

(1)直接利用銳角三角函數(shù)關(guān)系得出cos∠FHE=,進而得出答案;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結(jié)論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:籃板頂端F到地面的距離是4.4米.【點睛】本題考查解直角三角形、銳角三角函數(shù)、解題的關(guān)鍵是添加輔助線,構(gòu)造直角三角形,記住銳角三角函數(shù)的定義.21、(1,0)、(﹣2,0)【解析】試題分析:拋物線與x軸交點的縱坐標等于零,由此解答即可.試題解析:解:令,即.解得:,.∴該拋物線與軸的交點坐標為(-2,0),(1,0).22、(1)該區(qū)抽樣調(diào)查的人數(shù)是2400人;(2)見解析,最喜歡“其它”讀物的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是度數(shù)21.6°;(3)估計最喜歡讀“名人傳記”的學生是4896人【解析】

(1)由“科普知識”人數(shù)及其百分比可得總?cè)藬?shù);(2)總?cè)藬?shù)乘以“漫畫叢書”的人數(shù)求得其人數(shù)即可補全圖形,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論