




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)A必須排在前三項執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種2.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.3.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.34.設(shè)為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件5.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.6.國務(wù)院發(fā)布《關(guān)于進(jìn)一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費(fèi)使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機(jī)構(gòu)統(tǒng)計了年至年國家財政性教育經(jīng)費(fèi)投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經(jīng)費(fèi)的支出持續(xù)增長B.年以來,國家財政性教育經(jīng)費(fèi)的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經(jīng)費(fèi)的支出增長最多的年份是年7.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.8.已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)為拋物線上任意一點(diǎn)的平分線與軸交于,則的最大值為A. B. C. D.9.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.10.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且11.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.12.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.40二、填空題:本題共4小題,每小題5分,共20分。13.某高校開展安全教育活動,安排6名老師到4個班進(jìn)行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.14.已知橢圓:的左,右焦點(diǎn)分別為,,過的直線交橢圓于,兩點(diǎn),若,且的三邊長,,成等差數(shù)列,則的離心率為__________.15.已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=__________.16.春天即將來臨,某學(xué)校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨(dú)立.該學(xué)校的某班隨機(jī)領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.18.(12分)已知圓O經(jīng)過橢圓C:的兩個焦點(diǎn)以及兩個頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.19.(12分)已知函數(shù).(Ⅰ)當(dāng)時,討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對任意的和恒成立,求實數(shù)的取值范圍.20.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn).為橢圓的右焦點(diǎn),為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若,求的值;⑶設(shè)直線,的斜率分別為,,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.21.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.22.(10分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動點(diǎn)(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
分三種情況,任務(wù)A排在第一位時,E排在第二位;任務(wù)A排在第二位時,E排在第三位;任務(wù)A排在第三位時,E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務(wù)A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時,E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點(diǎn)睛】本題考查了排列組合問題,考查了學(xué)生的邏輯推理能力,屬于中檔題.2、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題3、C【解析】
對于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯誤的;對于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設(shè)函數(shù),則,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以當(dāng)時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點(diǎn)睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運(yùn)算能力,屬于中檔試題.4、A【解析】
根據(jù)向量共線的性質(zhì)依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當(dāng)與共線,方向相反時,,故不必要.故選:.【點(diǎn)睛】本題考查了向量共線,充分不必要條件,意在考查學(xué)生的推斷能力.5、D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(diǎn)(可以用二分法求得).當(dāng)時,顯然不成立;當(dāng)時,只需或,解得或.故選:D.【點(diǎn)睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點(diǎn)的求法,屬于中檔題.6、C【解析】
觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點(diǎn)睛】本題考查統(tǒng)計圖表,正確認(rèn)識圖表是解題基礎(chǔ).7、B【解析】
根據(jù)函數(shù)單調(diào)性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.【點(diǎn)睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.8、A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點(diǎn)F(1,0),準(zhǔn)線方程為x=?1,
過點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當(dāng)時,,當(dāng)時,,,綜上:.故選:A.【點(diǎn)睛】本題主要考查拋物線的定義、性質(zhì)的簡單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計算能力,屬于中檔題.9、A【解析】
由函數(shù)性質(zhì),結(jié)合特殊值驗證,通過排除法求得結(jié)果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當(dāng)時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點(diǎn)睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.10、D【解析】
首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長度,進(jìn)一步求出個各棱長.【詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點(diǎn)睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.11、D【解析】
設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.12、A【解析】
化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點(diǎn)睛】本題考查了二項式定理,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、156【解析】
先考慮每班安排的老師人數(shù),然后計算出對應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進(jìn)行分析.14、【解析】
設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計算能力.15、【解析】
根據(jù)等差中項性質(zhì),結(jié)合等比數(shù)列通項公式即可求得公比;代入表達(dá)式,結(jié)合對數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列通項公式的簡單應(yīng)用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運(yùn)算,屬于中檔題.16、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點(diǎn)睛】本題考查二項分布的實際應(yīng)用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因為、分別為、的中點(diǎn),所以.又因為平面,平面,所以平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),則,,,,,,,.設(shè)平面的法向量為,則,即,令,則,,所以.設(shè)直線與平面所成角為,所以.因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,同時也考查了利用空間向量法計算直線與平面所成的角,考查推理能力與計算能力,屬于中等題.18、(1);(2)或【解析】
(1)先由題意得出,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對直線的斜率是否存在進(jìn)行分類討論,當(dāng)直線的斜率不存在時,可求出,然后進(jìn)行檢驗;當(dāng)直線的斜率存在時,可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢圓的方程聯(lián)立,由韋達(dá)定理,利用弦長公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過橢圓的上下頂點(diǎn),所以橢圓焦距等于短軸長,可得,又點(diǎn)在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當(dāng)直線不存在斜率時,解得,不符合題意;當(dāng)直線存在斜率時,設(shè)其方程為,因為直線與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,設(shè),則,所以,解得,所以直線的傾斜角為或.【點(diǎn)睛】求橢圓標(biāo)準(zhǔn)方程的方法一般為待定系數(shù)法,根據(jù)條件確定關(guān)于的方程組,解出,從而寫出橢圓的標(biāo)準(zhǔn)方程.解決直線與橢圓的位置關(guān)系的相關(guān)問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題.涉及弦中點(diǎn)的問題常常用“點(diǎn)差法”解決,往往會更簡單.19、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問題進(jìn)行等價轉(zhuǎn)化為,,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當(dāng)時,,當(dāng)時,在上恒成立,函數(shù)在上單調(diào)遞減;當(dāng)時,由得:;由得:.∴當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴當(dāng)時,,即又∵,∴實數(shù)的取值范圍是:.【點(diǎn)睛】本題主要考查導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和恒成立問題,考查分類討論的數(shù)學(xué)思想,等價轉(zhuǎn)化的數(shù)學(xué)思想等知識,屬于中等題.20、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 12 慧眼看交通 第1課時 教學(xué)設(shè)計-2023-2024學(xué)年道德與法治三年級下冊統(tǒng)編版
- 8 我們離不開呼吸 教學(xué)設(shè)計-2023-2024學(xué)年科學(xué)三年級下冊粵教粵科版
- 21 古詩詞三首 長相思(教學(xué)設(shè)計)-2024-2025學(xué)年統(tǒng)編版語文五年級上冊
- 3《做個“開心果”》第一課時(教學(xué)設(shè)計)2023-2024學(xué)年統(tǒng)編版道德與法治二年級下冊
- 場地宣傳合同范本
- 2 祖父的園子 教學(xué)設(shè)計-2024-2025學(xué)年語文五年級下冊統(tǒng)編版
- 2024年春七年級語文下冊第三單元11臺階教學(xué)反思新人教版
- Module 5(教學(xué)設(shè)計)-2023-2024學(xué)年外研版(一起)英語一年級下冊
- 2 百分?jǐn)?shù)(二)成數(shù) 教學(xué)設(shè)計-2023-2024學(xué)年六年級下冊數(shù)學(xué)人教版
- 運(yùn)輸支架合同范本
- 菜點(diǎn)與酒水知識課件
- 新修訂《中小學(xué)教師職業(yè)道德規(guī)范》解讀
- 品質(zhì)月工作總結(jié)
- 2024年貴州水投水務(wù)集團(tuán)有限公司招聘筆試參考題庫含答案解析
- (完整版)ERP流程及操作手冊
- 接上童氣:小學(xué)《道德與法治》統(tǒng)編教材研究
- 武器講解課件
- 高三二輪專題復(fù)習(xí)化學(xué)課件-分布系數(shù)(分?jǐn)?shù))圖像
- 支委委員辭去職務(wù)申請書
- 【橋梁工程的發(fā)展趨勢與思考5300字】
- GB/T 35274-2023信息安全技術(shù)大數(shù)據(jù)服務(wù)安全能力要求
評論
0/150
提交評論