版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山東省兗州市第一中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調(diào)和數(shù)列”.已知數(shù)列為調(diào)和數(shù)列,且,則的最大值是()A.50 B.100 C.150 D.2002.已知函數(shù)是奇函數(shù),將的圖像上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖像對應(yīng)的函數(shù)為.若的最小正周期為,且,則()A. B. C. D.3.將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積為()A. B. C. D.4.已知向量,,若,則實數(shù)a的值為A. B.2或 C.或1 D.5.在區(qū)間上隨機選取一個數(shù),則滿足的概率為()A. B. C. D.6.某校高一甲、乙兩位同學(xué)的九科成績?nèi)缜o葉圖所示,則下列說法正確的是()A.甲、乙兩人的各科平均分不同 B.甲、乙兩人的中位數(shù)相同C.甲各科成績比乙各科成績穩(wěn)定 D.甲的眾數(shù)是83,乙的眾數(shù)為877.在中,角所對的邊分別為,若的面積,則()A. B. C. D.8.如圖,飛機的航線和山頂在同一個鉛垂面內(nèi),若飛機的高度為海拔18km,速度為1000m/h,飛行員先看到山頂?shù)母┙菫椋?jīng)過1min后又看到山頂?shù)母┙菫?,則山頂?shù)暮0胃叨葹椋ň_到0.1km,參考數(shù)據(jù):)A.11.4km B.6.6km C.6.5km D.5.6km9.若是等差數(shù)列,則下列數(shù)列中也成等差數(shù)列的是()A. B. C. D.10.設(shè),是定義在上的兩個周期函數(shù),的周期為,的周期為,且是奇函數(shù).當(dāng)時,,,其中.若在區(qū)間上,函數(shù)有個不同的零點,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,,則_________.12.函數(shù)的反函數(shù)為__________.13.?dāng)?shù)列an滿足12a114.若等差數(shù)列和等比數(shù)列滿足,,則_______.15.如果是奇函數(shù),則=.16.已知函數(shù),若函數(shù)恰有個零點,則實數(shù)的取值范圍為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某城市的華為手機專賣店對該市市民使用華為手機的情況進行調(diào)查.在使用華為手機的用戶中,隨機抽取100名,按年齡(單位:歲)進行統(tǒng)計的頻率分布直方圖如圖:(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)的估計值(均精確到個位);(2)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加華為手機宣傳活動,再從這20人中年齡在和的人群里,隨機選取2人各贈送一部華為手機,求這2名市民年齡都在內(nèi)的概率.18.在中,角所對的邊分別為.(1)若為邊的中點,求證:;(2)若,求面積的最大值.19.如圖,在中,已知點D在邊BC上,,的面積是面積的倍,且,.(1)求;(2)求邊BC的長.20.已知,,.(1)求關(guān)于的表達(dá)式,并求的最小正周期;(2)若當(dāng)時,的最小值為,求的值.21.在平面直角坐標(biāo)系中,已知向量,,.(1)若,求的值;(2)若與的夾角為,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)調(diào)和數(shù)列定義知為等差數(shù)列,再由前20項的和為200知,最后根據(jù)基本不等式可求出的最大值?!驹斀狻恳驗閿?shù)列為調(diào)和數(shù)列,所以,即為等差數(shù)列又,又大于0所以【點睛】本題考查了新定義“調(diào)和數(shù)列”的性質(zhì)、等差數(shù)列的性質(zhì)及其前n項公式、基本不等式的性質(zhì),屬于難題。2、C【解析】
只需根據(jù)函數(shù)性質(zhì)逐步得出值即可?!驹斀狻恳驗闉槠婧瘮?shù),∴;又,,又∴,故選C?!军c睛】本題考查函數(shù)的性質(zhì)和函數(shù)的求值問題,解題關(guān)鍵是求出函數(shù)。3、C【解析】
試題分析:將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到的幾何體為底面為半徑為的圓、高為1的圓柱,其側(cè)面展開圖為長為,寬為1,所以所得幾何體的側(cè)面積為.故選C.4、C【解析】
根據(jù)題意,由向量平行的坐標(biāo)表示公式可得,解可得a的值,即可得答案.【詳解】根據(jù)題意,向量,,若,則有,解可得或1;故選C.【點睛】本題考查向量平行的坐標(biāo)表示方法,熟記平行的坐標(biāo)表示公式得到關(guān)于a的方程是關(guān)鍵,是基礎(chǔ)題5、D【解析】
在區(qū)間上,且滿足所得區(qū)間為,利用區(qū)間的長度比,即可求解.【詳解】由題意,在區(qū)間上,且滿足所得區(qū)間為,由長度比的幾何概型,可得概率為,故選D.【點睛】本題主要考查了長度比的幾何概型的概率的計算,其中解答中認(rèn)真審題,合理利用長度比求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.6、C【解析】
分別計算出甲、乙兩位同學(xué)成績的平均分、中位數(shù)、眾數(shù),由此確定正確選項.【詳解】甲的平均分為,乙的平均分,兩人平均分相同,故A選項錯誤.甲的中位數(shù)為,乙的中位數(shù)為,兩人中位數(shù)不相同,故B選項錯誤.甲的眾數(shù)是,乙的眾數(shù)是,故D選項錯誤.所以正確的答案為C.由莖葉圖可知,甲的數(shù)據(jù)比較集中,乙的數(shù)據(jù)比較分散,所以甲比較穩(wěn)定.(因為方差運算量特別大,故不需要計算出方差.)故選:C【點睛】本小題主要考查根據(jù)莖葉圖比較平均數(shù)、中位數(shù)、眾數(shù)、方差,屬于基礎(chǔ)題.7、B【解析】
利用面積公式及可求,再利用同角的三角函數(shù)的基本關(guān)系式可求,最后利用余弦定理可求的值.【詳解】因為,故,所以,因為,故,又,由余弦定理可得,故.故選B.【點睛】三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.8、C【解析】
根據(jù)題意求得和的長,然后利用正弦定理求得BC,最后利用求得問題答案.【詳解】在中,根據(jù)正弦定理,所以:山頂?shù)暮0胃叨葹?8-11.5=6.5km.故選:C【點睛】本題考查了正弦定理在實際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)應(yīng)用,轉(zhuǎn)化與劃歸,數(shù)學(xué)運算的能力,屬于中檔題.9、C【解析】
根據(jù)等差數(shù)列的定義,只需任意相鄰的后一項與前一項的差為定值即可.【詳解】A:=(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],與n有關(guān)系,因此不是等差數(shù)列.B:==與n有關(guān)系,因此不是等差數(shù)列.C:3an+1﹣3an=3(an+1﹣an)=3d為常數(shù),仍然為等差數(shù)列;D:當(dāng)數(shù)列{an}的首項為正數(shù)、公差為負(fù)數(shù)時,{|an|}不是等差數(shù)列;故選:C【點睛】本題考查了等差數(shù)列的定義及其通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)題意可知,函數(shù)和在上的圖象有個不同的交點,作出兩函數(shù)圖象,即可數(shù)形結(jié)合求出.【詳解】作出兩函數(shù)的圖象,如圖所示:由圖可知,函數(shù)和在上的圖象有個不同的交點,故函數(shù)和在上的圖象有個不同的交點,才可以滿足題意.所以,圓心到直線的距離為,解得,因為兩點連線斜率為,所以,.故選:B.【點睛】本題主要考查了分段函數(shù)的圖象應(yīng)用,函數(shù)性質(zhì)的應(yīng)用,函數(shù)的零點個數(shù)與兩函數(shù)圖象之間的交點個數(shù)關(guān)系的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)形結(jié)合能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)向量平行交叉相乘相減等于0即可.【詳解】因為兩個向量平行,所以【點睛】本題主要考查了向量的平行,即,若則,屬于基礎(chǔ)題.12、【解析】
由得,即,把與互換即可得出【詳解】由得所以把與互換,可得故答案為:【點睛】本題考查的是反函數(shù)的求法,較簡單.13、14,n=1【解析】
試題分析:這類問題類似于Sn=f(an)的問題處理方法,在12a1+122a2+...+1.考點:數(shù)列的通項公式.14、【解析】
設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題中條件求出、的值,進而求出和的值,由此可得出的值.【詳解】設(shè)等差數(shù)列的公差和等比數(shù)列的公比分別為和,則,求得,,那么,故答案為.【考點】等差數(shù)列和等比數(shù)列【點睛】等差、等比數(shù)列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運算問題轉(zhuǎn)化為解關(guān)于基本量的方程(組)問題,因此可以說數(shù)列中的絕大部分運算題可看作方程應(yīng)用題,所以用方程思想解決數(shù)列問題是一種行之有效的方法.15、-2【解析】試題分析:∵,∴,∴,∴=-2考點:本題考查了三角函數(shù)的性質(zhì)點評:對于定義域為R的奇函數(shù)恒有f(0)=0.利用此結(jié)論可解決此類問題16、【解析】
首先根據(jù)題意轉(zhuǎn)化為函數(shù)與有個交點,再畫出與的圖象,根據(jù)圖象即可得到的取值范圍.【詳解】有題知:函數(shù)恰有個零點,等價于函數(shù)與有個交點.當(dāng)函數(shù)與相切時,即:,,,解得或(舍去).所以根據(jù)圖象可知:.故答案為:【點睛】本題主要考查函數(shù)的零點問題,同時考查了學(xué)生的轉(zhuǎn)化能力,體現(xiàn)了數(shù)形結(jié)合的思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】分析:(1)直接利用頻率分布直方圖的平均值和中位數(shù)公式求解.(2)利用古典概型求這2名市民年齡都在內(nèi)的概率.詳解:(Ⅰ)平均值的估計值:中位數(shù)的估計值:因為,所以中位數(shù)位于區(qū)間年齡段中,設(shè)中位數(shù)為,所以,.(Ⅱ)用分層抽樣的方法,抽取的20人,應(yīng)有4人位于年齡段內(nèi),記為,2人位于年齡段內(nèi),記為.現(xiàn)從這6人中隨機抽取2人,設(shè)基本事件空間為,則設(shè)2名市民年齡都在為事件A,則,所以.點睛:(1)本題主要考查頻率分布直方圖,考查平均值和中位數(shù)的計算和古典概型,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和基本的運算能力.(2)先計算出每個小矩形的面積,通過解方程找到左邊面積為0.5的點P,點P對應(yīng)的數(shù)就是中位數(shù).一般利用平均數(shù)的公式計算.其中代表第個矩形的橫邊的中點對應(yīng)的數(shù),代表第個矩形的面積.18、(1)詳見解析;(2)1.【解析】
(1)證法一:根據(jù)為邊的中點,可以得到向量等式,平方,再結(jié)合余弦定理,可以證明出等式;證法二:分別在和中,利用余弦定理求出和的表達(dá)式,利用,可以證明出等式;(2)解法一:解法一:記面積為.由題意并結(jié)合(1)所證結(jié)論得:,利用已知,再結(jié)合基本不等式,最后求可求出面積的最大值;解法二:利用余弦定理把表示出來,結(jié)合重要不等式,再利用三角形面積公式可得,令設(shè),利用輔助角公式,可以求出的最大值,即可求出面積的最大值.【詳解】(1)證法一:由題意得①由余弦定理得②將②代入①式并化簡得,故;證法二:在中,由余弦定理得,在中,由余弦定理得,∵,∴,則,故;(2)解法一:記面積為.由題意并結(jié)合(1)所證結(jié)論得:,又已知,則,即,當(dāng)時,等號成立,故,即面積的最大值為1.解法二:設(shè)則由,故.【點睛】本題考查了余弦定理、三角形面積公式的應(yīng)用,考查了重要不等式及基本不等式,考查了數(shù)學(xué)運算能力.19、(1);(2)【解析】
(1)利用三角形面積公式得出和的表達(dá)式,由,化簡得出的值;(2)由結(jié)合,得出,在中,利用余弦定理得出,再由余弦定理得出,進而得出,由直角三角形的邊角關(guān)系得出,最后由得出的長.【詳解】(1)因為,,且,所以即,所以.(2)由(1)知,所以在中,,,由余弦定理所以.且所以,解得.所以.即邊BC的長為.【點睛】本題主要考查了三角形面積公式以及余弦定理的應(yīng)用,屬于中檔題.20、(1),;(2).【解析】
(1)根據(jù)向量數(shù)量積的坐標(biāo)運算及輔助角公式得:,并求出最小正周期為;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年建筑工程公司與施工方分包合同
- 2024年慶典花卉租賃合同
- 2024年度環(huán)保設(shè)備生產(chǎn)與安裝合同
- 2024年企業(yè)間關(guān)于虛擬現(xiàn)實技術(shù)研發(fā)合同
- 2024年度BIM模型能耗分析與優(yōu)化服務(wù)合同
- 2024國有林業(yè)企業(yè)與農(nóng)村集體組織土地承包合同
- 2024年家庭遺產(chǎn)分配協(xié)議
- 2024年度金融科技合作協(xié)議
- 2024酒店布草采購合同
- 2024年度離婚財產(chǎn)分配合同:涉及三個未成年子女的撫養(yǎng)權(quán)
- 急診搶救室接診流程圖
- 水電機組的運行穩(wěn)定性及水輪機轉(zhuǎn)輪裂紋
- 《自信主題班會》主題班會ppt課件
- 視聽語言考試卷
- 2020年技術(shù)服務(wù)保障措施
- 螺旋箍筋長度計算公式
- 鋼管慣性距計算
- 第八章_噪聲控制技術(shù)——隔聲
- 資金調(diào)撥和內(nèi)部往來管理流程手冊
- 2022考評員工作總結(jié)5篇
- 常用抗癲癇藥物簡介
評論
0/150
提交評論