版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省莆田市第六中學2025屆高一下數(shù)學期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若平面平面,直線,直線,則關于直線、的位置關系的說法正確的是()A. B.、異面 C. D.、沒有公共點2.已知中,,,,則B等于()A. B.或 C. D.或3.在中,角A,B,C的對邊分別為a,b,c.已知,,,則B為()A. B.或 C. D.或4.點直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或5.等比數(shù)列的各項均為正數(shù),且,則()A. B. C. D.6.已知向量,滿足,,,則()A.3 B.2 C.1 D.07.在中,內(nèi)角、、所對的邊分別為、、,且,則下列關于的形狀的說法正確的是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定8.如圖,正方體的棱長為,那么四棱錐的體積是()A.B.C.D.9.以下有四個說法:①若、為互斥事件,則;②在中,,則;③和的最大公約數(shù)是;④周長為的扇形,其面積的最大值為;其中說法正確的個數(shù)是()A. B.C. D.10.某正弦型函數(shù)的圖像如圖,則該函數(shù)的解析式可以為().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,內(nèi)角,,所對的邊分別為,,,,且,則面積的最大值為______.12.在中,,,,點在線段上,若,則的面積是_____.13.角的終邊經(jīng)過點,則___________________.14.在中,,且,則.15.已知直線與軸、軸相交于兩點,點在圓上移動,則面積的最大值和最小值之差為.16.某企業(yè)利用隨機數(shù)表對生產(chǎn)的800個零件進行抽樣測試,先將800個零件進行編號,編號分別為001,002,003,…,800從中抽取20個樣本,如下提供隨機數(shù)表的第行到第行:若從表中第6行第6列開始向右依次讀取個數(shù)據(jù),則得到的第個樣本編號是_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù)的定義域為R,當時,,且對任意實數(shù)m、n,有成立,數(shù)列滿足,且.(1)求的值;(2)若不等式對一切都成立,求實數(shù)k的最大值.18.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對的邊分別為,,,若,且為鈍角,,求面積的最大值.19.已知數(shù)列的前項和為,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令,數(shù)列的前項和為,若不等式對任意恒成立,求實數(shù)的取值范圍.20.已知向量,滿足,,.(1)求向量,所成的角的大小;(2)若,求實數(shù)的值.21.如圖,在平面四邊形中,,,的面積為.⑴求的長;⑵若,,求的長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)條件知:關于直線、的位置關系異面或者平行,故沒有公共點.【詳解】若平面平面,直線,直線,則關于直線、的位置關系是異面或者平行,所以、沒有公共點.故答案選D【點睛】本題考查了直線,平面的位置關系,意在考查學生的空間想象能力.2、D【解析】
根據(jù)題意和正弦定理求出sinB的值,由邊角關系、內(nèi)角的范圍、特殊角的三角函數(shù)值求出B.【詳解】由題意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,則B=60°或B=120°,故選:D.【點睛】本題考查正弦定理,以及邊角關系的應用,注意內(nèi)角的范圍,屬于基礎題.3、C【解析】
根據(jù)正弦定理得到,再根據(jù)知,得到答案.【詳解】根據(jù)正弦定理:,即,根據(jù)知,故.故選:.【點睛】本題考查了根據(jù)正弦定理求角度,多解是容易發(fā)生的錯誤.4、C【解析】
直線經(jīng)過定點,斜率為,數(shù)形結合利用直線的斜率公式,求得實數(shù)的取值范圍,得到答案.【詳解】如圖所示,直線經(jīng)過定點,斜率為,當直線經(jīng)過點時,則,當直線經(jīng)過點時,則,所以實數(shù)的取值范圍,故選C.【點睛】本題主要考查了直線過定點問題,以及直線的斜率公式的應用,著重考查了數(shù)形結合法,以及推理與運算能力,屬于基礎題.5、D【解析】
本題首先可根據(jù)數(shù)列是各項均為正數(shù)的等比數(shù)列以及計算出的值,然后根據(jù)對數(shù)的相關運算以及等比中項的相關性質(zhì)即可得出結果.【詳解】因為等比數(shù)列的各項均為正數(shù),,所以,,所以,故選D.【點睛】本題考查對數(shù)的相關運算以及等比中項的相關性質(zhì),考查的公式為以及在等比數(shù)列中有,考查計算能力,是簡單題.6、A【解析】
由,求出,代入計算即可.【詳解】由題意,則.故答案為A.【點睛】本題考查了向量的數(shù)量積,考查了學生的計算能力,屬于基礎題.7、B【解析】
利用三角形的正、余弦定理判定.【詳解】在中,內(nèi)角、、所對的邊分別為、、,且,由正弦定理得,得,則,為直角三角形.故選B【點睛】本題考查了三角形正弦定理的應用,屬于基礎題.8、B【解析】
根據(jù)錐體體積公式,求得四棱錐的體積.【詳解】根據(jù)正方體的幾何性質(zhì)可知平面,所以,故選B.【點睛】本小題主要考查四棱錐體積的計算,屬于基礎題.9、C【解析】
設、為對立事件可得出命題①的正誤;利用大邊對大角定理和余弦函數(shù)在上的單調(diào)性可判斷出命題②的正誤;列出和各自的約數(shù),可找出兩個數(shù)的最大公約數(shù),從而可判斷出命題③的正誤;設扇形的半徑為,再利用基本不等式可得出扇形面積的最大值,從而判斷出命題④的正誤.【詳解】對于命題①,若、為對立事件,則、互斥,則,命題①錯誤;對于命題②,由大邊對大角定理知,,且,函數(shù)在上單調(diào)遞減,所以,,命題②正確;對于命題③,的約數(shù)有、、、、、,的約數(shù)有、、、、、、、,則和的最大公約數(shù)是,命題③正確;對于命題④,設扇形的半徑為,則扇形的弧長為,扇形的面積為,由基本不等式得,當且僅當,即當時,等號成立,所以,扇形面積的最大值為,命題④錯誤.故選C.【點睛】本題考查命題真假的判斷,涉及互斥事件的概率、三角形邊角關系、公約數(shù)以及扇形面積的最值,判斷時要結合這些知識點的基本概念來理解,考查推理能力,屬于中等題.10、C【解析】試題分析:由圖象可得最大值為2,則A=2,周期,∴∴,又,是五點法中的第一個點,∴,∴把A,B排除,對于C:,故選C考點:本題考查函數(shù)的圖象和性質(zhì)點評:解決本題的關鍵是確定的值二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)正弦定理將轉(zhuǎn)化為,即,由余弦定理得,再用基本不等式法求得,根據(jù)面積公式求解.【詳解】根據(jù)正弦定理可轉(zhuǎn)化為,化簡得由余弦定理得因為所以,當且僅當時取所以則面積的最大值為.故答案為:【點睛】本題主要考查正弦定理,余弦定理,基本不等式的綜合應用,還考查了運算求解的能力,屬于中檔題.12、【解析】
過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.13、【解析】
先求出到原點的距離,再利用正弦函數(shù)定義求解.【詳解】因為,所以到原點距離,故.故答案為:.【點睛】設始邊為的非負半軸,終邊經(jīng)過任意一點,則:14、【解析】
∵在△ABC中,∠ABC=60°,且AB=5,AC=7,
∴由余弦定理,可得:,
∴整理可得:,解得:BC=8或?3(舍去).考點:1、正弦定理及余弦定理;2、三角形內(nèi)角和定理及兩角和的余弦公式.15、15【解析】
解:設作出與已知直線平行且與圓相切的直線,
切點分別為,如圖所示
則動點C在圓上移動時,若C與點重合時,
△ABC面積達到最小值;而C與點重合時,△ABC面積達到最大值
∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點
可得∴△ABC面積的最大值和最小值之差為
,
其中分別為點、點到直線AB的距離
∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點
∴點、點到直線AB的距離之差等于圓的直徑,即
因此△ABC面積的最大值和最小值之差為
故答案為:1516、1【解析】
根據(jù)隨機數(shù)表法抽樣的定義進行抽取即可.【詳解】第6行第6列的數(shù)開始的數(shù)為808,不合適,436,789不合適,535,577,348,994不合適,837不合適,522,535重復不合適,1合適則滿足條件的6個編號為436,535,577,348,522,1,則第6個編號為1,故答案為1.【點睛】本題考查了簡單隨機抽樣中的隨機數(shù)表法,主要考查隨機抽樣的應用,根據(jù)定義選擇滿足條件的數(shù)據(jù)是解決本題的關鍵.本題屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)首先令,得:,根據(jù)得到,即是以,的等差數(shù)列,再計算即可.(2)將題意轉(zhuǎn)化為,設,判斷其單調(diào)性,求出最小值即可得到答案.【詳解】令,得:,.所以.因為,所以.所以,.所以是以,的等差數(shù)列.所以,.(2)因為恒成立.即恒成立.設,知,且,,即,故為關于的增函數(shù),.所以,的最大值為.【點睛】本題主要考查數(shù)列與函數(shù)的綜合,利用函數(shù)的單調(diào)性是解題的關鍵,屬于難題.18、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】
(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:單調(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當且僅當時取等號)即面積的最大值為:【點睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應用、余弦定理和三角形面積公式的應用等知識;求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對應關系來進行求解.19、(1)(2)【解析】試題分析:解:(1)當時,,解得;當時,,∴,故數(shù)列是以為首項,2為公比的等比數(shù)列,故.4分(2)由(1)得,,∴5分令,則,兩式相減得∴,7分故,8分又由(1)得,,9分不等式即為,即為對任意恒成立,10分設,則,∵,∴,故實數(shù)t的取值范圍是.12分考點:等比數(shù)列點評:主要是考查了等比數(shù)列的通項公式和求和的運用,屬于基礎題.20、(1)(2)【解析】
(1)化簡即得向量,所成的角的大??;(2)由,可得,化簡即得解.【詳解】解:(1)由,可得.即,因為,所以,又因為,,代入上式,可得,即.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年反腐倡廉警示教育工作總結
- 美術鑒賞與創(chuàng)新思維
- 2006年貴州高考語文真題及答案
- 體育用品行政后勤工作總結
- 體育用品行業(yè)行政后勤工作總結
- 2023-2024年員工三級安全培訓考試題附答案【完整版】
- 2024企業(yè)主要負責人安全培訓考試題及答案(名校卷)
- 教師期末教學工作總結4篇
- 快樂的國慶節(jié)作文400字5篇
- 市場震動月度報告
- 【人教部編版語文六年級上冊】選擇題專項練習復習(100道題后附答案)
- 腹膜透析建立課件
- 用戶側儲能商業(yè)模式及投資收益分析
- 廣東省廣州市越秀區(qū)2022-2023學年八年級上學期期末物理試卷
- 統(tǒng)編版語文四年級上冊《期末作文專項復習》 課件
- 2024年黑龍江省機場集團招聘筆試參考題庫含答案解析
- 食品從業(yè)人員安全學習培訓記錄
- 內(nèi)科季度護理質(zhì)量分析課件
- 2024年安全生產(chǎn)月活動安全知識競賽題庫含答案
- 銷售回款專項激勵政策方案(地產(chǎn)公司)
- 孕產(chǎn)婦健康管理服務規(guī)范課件
評論
0/150
提交評論