




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省滕州市第一中學高三下學期聯(lián)考新高考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長為1,圖中復平面內(nèi)點表示復數(shù),則表示復數(shù)的點是()A.E B.F C.G D.H2.若函數(shù)滿足,且,則的最小值是()A. B. C. D.3.設遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.4.已知,且,則()A. B. C. D.5.雙曲線x2a2A.y=±2x B.y=±3x6.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.7.已知是虛數(shù)單位,則()A. B. C. D.8.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.9.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)10.已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.11.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件12.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若非零向量,滿足,,,則______.14.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則的最小值為________.16.曲線在處的切線方程是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.18.(12分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.19.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎者擲各面標有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學期望不超過元,求的最小值.20.(12分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.21.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)當時,不等式恒成立,求實數(shù)的取值范圍.22.(10分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由于在復平面內(nèi)點的坐標為,所以,然后將代入化簡后可找到其對應的點.【詳解】由,所以,對應點.故選:C【點睛】此題考查的是復數(shù)與復平面內(nèi)點的對就關系,復數(shù)的運算,屬于基礎題.2、A【解析】
由推導出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當且僅當時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當時,取得最小值.故選:A.【點睛】本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應用,考查計算能力,屬于中等題.3、A【解析】
根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.4、B【解析】分析:首先利用同角三角函數(shù)關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關于的式子,代入從而求得結果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關同角三角函數(shù)關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數(shù)關系式求解,也可以結合三角函數(shù)的定義式求解.5、A【解析】分析:根據(jù)離心率得a,c關系,進而得a,b關系,再根據(jù)雙曲線方程求漸近線方程,得結果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a26、A【解析】
首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當時,.當時,為增函數(shù),且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.7、B【解析】
根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎題型.8、A【解析】
設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題9、C【解析】
求函數(shù)導數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于??碱}型.10、D【解析】
先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數(shù)在不等式恒成立中的應用,考查了學生轉(zhuǎn)化與化歸思想以及數(shù)形結合的思想,是一道中檔題.11、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應用,屬于基礎題12、B【解析】
先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)向量的模長公式以及數(shù)量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數(shù)量積公式以及模長公式的應用,屬于中檔題.14、【解析】
將代入求解即可;當為奇數(shù)時,,則轉(zhuǎn)化為,設,由單調(diào)性求得的最小值;同理,當為偶數(shù)時,,則轉(zhuǎn)化為,設,利用導函數(shù)求得的最小值,進而比較得到的最大值.【詳解】由題,,解得.當為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當為偶數(shù)時,,由,得,設,,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.15、40【解析】
設等比數(shù)列的公比為,根據(jù),可得,因為,根據(jù)均值不等式,即可求得答案.【詳解】設等比數(shù)列的公比為,,,等比數(shù)列的各項為正數(shù),,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數(shù)列值的最值問題,解題關鍵是掌握等比數(shù)列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.16、【解析】
利用導數(shù)的運算法則求出導函數(shù),再利用導數(shù)的幾何意義即可求解.【詳解】求導得,所以,所以切線方程為故答案為:【點睛】本題考查了基本初等函數(shù)的導數(shù)、導數(shù)的運算法則以及導數(shù)的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)由已知可證,即可證明結論;(2)根據(jù)已知可證平面,建立空間直角坐標系,求出坐標,進而求出平面和平面的法向量坐標,由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點,∴,∵平面且,∴平面,以為原點,分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,∴設平面的法向量為,則,∴,取,則.設平面的法向量為,則,∴,取,則.∴,設二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點,因為四邊形為平行四邊形,所以為中點,又因為四邊形為菱形,所以為中點,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學運算的數(shù)學核心素養(yǎng),屬于中檔題.18、(1)見解析;(2)【解析】
(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結論,得到,利用三角形的面積公式列方程,由此求得,進而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查運算求解能力,屬于中檔題.19、;.【解析】
設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.20、(1)證明見解析(2)【解析】
(1)先證明EF平面,即可求證;(2)根據(jù)二面角的余弦值,可得平面,以為坐標原點,建立空間直角坐標系,利用向量計算線面角即可.【詳解】(1)連接,交于點,連結.則,故面.又面,因此.(2)由(1)知即為二面角的平面角,且.在中應用余弦定理,得,于是有,即,從而有平面.以為坐標原點,建立如圖所示的空間直角坐標系,則,于是,,設平面的法向量為,則,即,解得于是平面的一個法向量為.設直線與平面所成角為,因此.【點睛】本題主要考查了線面垂直,線線垂直的證明,二面角,線面角的向量求法,屬于中檔題.21、(1)(2)【解析】
(1)當時,,當或時,,所以可轉(zhuǎn)化為,解得,所以不等式的解集為.(2)因為,所以,所以,即,即.當時,因為,所以,不符合題意.當時,解可得,因為當時,不等式恒成立,所以,所以,解得,所以實數(shù)的取值范圍為.22、(1)(2)【解析】
(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法律服務行業(yè)法律顧問服務協(xié)議
- 產(chǎn)業(yè)園物業(yè)服務合同
- 古詩文登高解讀與教學方案設計
- 個人權益保護網(wǎng)絡平臺使用協(xié)議
- 企業(yè)級網(wǎng)絡安全預防預案
- 裝修工程擔保合同
- 《宋代書法欣賞:大學書法藝術課程教案》
- 在線教育行業(yè)分析模擬試題集
- 股權擔保協(xié)議書規(guī)范
- 企業(yè)社會責任年度演講致辭草稿
- 中國后循環(huán)缺血的專家共識48506課件
- 信用管理概論課件整書電子教案完整版教學課件全套ppt教學教程最全課件最新
- 思想道德與法治全冊教案
- (高職)旅游景區(qū)服務與管理電子課件完整版PPT全書電子教案
- 唯美動畫生日快樂電子相冊視頻動態(tài)PPT模板
- 設計文件簽收表(一)
- 試運行方案計劃-
- 可研匯報0625(專家評審)
- 帶電核相試驗報告
- SCH壁厚等級對照表
- 春季常見傳染病預防知識PPT課件
評論
0/150
提交評論