版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省蘇州市立達中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知中,,,若,則的坐標為()A. B. C. D.2.曲線與過原點的直線沒有交點,則的傾斜角的取值范圍是()A. B. C. D.3.在數(shù)列中,,則數(shù)列的前n項和的最大值是()A.136 B.140 C.144 D.1484.供電部門對某社區(qū)1000位居民2019年4月份人均用電情況進行統(tǒng)計后,按人均用電量分為[0,10),[10,20),[20,30),[40,50]五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是()A.4月份人均用電量人數(shù)最多的一組有400人B.4月份人均用電量不低于20度的有500人C.4月份人均用電量為25度D.在這1000位居民中任選1位協(xié)助收費,選到的居民用電量在[30,40)一組的概率為15.如圖,正四棱柱中(底面是正方形,側(cè)棱垂直于底面),,則異面直線與所成角的余弦值為()A. B. C. D.6.一個幾何體的三視圖分別是一個正方形,一個矩形,一個半圓,尺寸大小如圖所示,則該幾何體的體積是()A. B. C. D.7.函數(shù)的部分圖像大致為A. B. C. D.8.已知,則滿足的關(guān)系式是A.,且 B.,且C.,且 D.,且9.在等比數(shù)列中,若,則的值為()A. B. C. D.10.某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()A.640 B.520 C.280 D.240二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊上一點P的坐標為,則____.12.下列說法中:①若,滿足,則的最大值為;②若,則函數(shù)的最小值為③若,滿足,則的最小值為④函數(shù)的最小值為正確的有__________.(把你認為正確的序號全部寫上)13.若正實數(shù),滿足,則的最小值是________.14.已知為直線上一點,過作圓的切線,則切線長最短時的切線方程為__________.15.函數(shù)的遞增區(qū)間是__________.16.已知直線分別與x軸、y軸交于A,B兩點,則等于________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.從高三學(xué)生中抽出50名學(xué)生參加數(shù)學(xué)競賽,由成績得到如圖所示的頻率分布直方圖.利用頻率分布直方圖求:(1)這50名學(xué)生成績的眾數(shù)與中位數(shù);(2)這50名學(xué)生的平均成績.(答案精確到0.1)18.已知函數(shù)=的定義域為=的定義域為(其中為常數(shù)).(1)若,求及;(2)若,求實數(shù)的取值范圍.19.已知正方形的中心為,一條邊所在直線的方程是.(1)求該正方形中與直線平行的另一邊所在直線的方程;(2)求該正方形中與直線垂直的一邊所在直線的方程.20.已知四棱錐的底面是菱形,底面,是上的任意一點求證:平面平面設(shè),求點到平面的距離在的條件下,若,求與平面所成角的正切值21.已知函數(shù)(1)求的值;(2)求的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù),,可得;由可得M為BC中點,即可求得的坐標,進而利用即可求解.【詳解】因為,所以因為,即M為BC中點所以所以所以選A【點睛】本題考查了向量的減法運算和線性運算,向量的坐標運算,屬于基礎(chǔ)題.2、A【解析】
作出曲線的圖形,得出各射線所在直線的傾斜角,觀察直線在繞著原點旋轉(zhuǎn)時,直線與曲線沒有交點時,直線的傾斜角的變化,由此得出的取值范圍.【詳解】當,時,由得,該射線所在直線的傾斜角為;當,時,由得,該射線所在直線的傾斜角為;當,時,由得,該射線所在直線的傾斜角為;當,時,由得,該射線所在直線的傾斜角為.作出曲線的圖象如下圖所示:由圖象可知,要使得過原點的直線與曲線沒有交點,則直線的傾斜角的取值范圍是,故選:A.【點睛】本題考查直線傾斜角的取值范圍,考查數(shù)形結(jié)合思想,解題的關(guān)鍵就是作出圖形,利用數(shù)形結(jié)合思想進行求解,屬于中等題.3、C【解析】
可得數(shù)列為等差數(shù)列且前8項為正數(shù),第9項為0,從第10項開始為負數(shù),可得前8或9項和最大,由求和公式計算可得.【詳解】解:∵在數(shù)列中,,
,即數(shù)列為公差為?4的等差數(shù)列,
,
令可得,
∴遞減的等差數(shù)列中前8項為正數(shù),第9項為0,從第10項開始為負數(shù),
∴數(shù)列的前8或9項和最大,
由求和公式可得
故選:C.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的判定,屬基礎(chǔ)題.4、C【解析】
根據(jù)頻率分布直方圖逐一計算分析.【詳解】A:用電量最多的一組有:0.04×10×1000=400人,故正確;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正確;C:人均用電量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故錯誤;D:用電量在[30,40)的有:0.01×10×1000=100人,所以P=100故選C.【點睛】本題考查利用頻率分布直方圖求解相關(guān)量,難度較易.頻率分布直方圖中平均數(shù)的求法:每一段的組中值×頻率5、A【解析】
試題分析:連結(jié),異面直線所成角為,設(shè),在中考點:異面直線所成角6、C【解析】
由給定的幾何體的三視圖得到該幾何體表示一個底面半徑為1,母線長為2的半圓柱,結(jié)合圓柱的體積公式,即可求解.【詳解】由題意,根據(jù)給定的幾何體的三視圖可得:該幾何體表示一個底面半徑為1,母線長為2的半圓柱,所以該半圓柱的體積為.故選:C.【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.7、C【解析】由題意知,函數(shù)為奇函數(shù),故排除B;當時,,故排除D;當時,,故排除A.故選C.點睛:函數(shù)圖像問題首先關(guān)注定義域,從圖像的對稱性,分析函數(shù)的奇偶性,根據(jù)函數(shù)的奇偶性排除部分選擇項,從圖像的最高點、最低點,分析函數(shù)的最值、極值,利用特值檢驗,較難的需要研究單調(diào)性、極值等,從圖像的走向趨勢,分析函數(shù)的單調(diào)性、周期性等.8、B【解析】
根據(jù)對數(shù)函數(shù)的性質(zhì)判斷.【詳解】∵,∴,∵,∴,又,∴,故選B.【點睛】本題考查對數(shù)函數(shù)的性質(zhì),掌握對數(shù)函數(shù)的單調(diào)性是解題關(guān)鍵.9、B【解析】
根據(jù)等比數(shù)列的性質(zhì):若,則.【詳解】等比數(shù)列中,,,故選B.【點睛】本題考查等比數(shù)列的通項公式和性質(zhì),此題也可用通項公式求解.10、B【解析】
由頻率分布直方圖得到初賽成績大于90分的頻率,由此能求出獲得復(fù)賽資格的人數(shù).【詳解】初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),由頻率分布直方圖得到初賽成績大于90分的頻率為:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴獲得復(fù)賽資格的人數(shù)為:0.1×800=2.故選:B.【點睛】本題考查頻率分布直方圖的應(yīng)用,考查頻數(shù)的求法,考查頻率分布直方圖等基礎(chǔ)知識,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點到原點的距離,,由三角函數(shù)的定義可得,,,此時;故答案為.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.12、③④【解析】
①令,得出,再利用雙勾函數(shù)的單調(diào)性判斷該命題的正誤;②將函數(shù)解析式變形為,利用基本不等式判斷該命題的正誤;③由得出,得出,利用基本不等式可判斷該命題的正誤;④將代數(shù)式與代數(shù)式相乘,展開后利用基本不等式可求出的最小值,進而判斷出該命題的正誤?!驹斀狻竣儆傻茫瑒t,則,設(shè),則,則,則上減函數(shù),則上為增函數(shù),則時,取得最小值,當時,,故的最大值為,錯誤;②若,則函數(shù),則,即函數(shù)的最大值為,無最小值,故錯誤;③若,滿足,則,則,由,得,則,當且僅當,即得,即時取等號,即的最小值為,故③正確;④,當且僅當,即,即時,取等號,即函數(shù)的最小值為,故④正確,故答案為:③④?!军c睛】本題考查利用基本不等式來判斷命題的正誤,利用基本不等式需注意滿足“一正、二定、三相等”這三個條件,同時注意結(jié)合雙勾函數(shù)單調(diào)性來考查,屬于中等題。13、【解析】
將配湊成,由此化簡的表達式,并利用基本不等式求得最小值.【詳解】由得,所以.當且僅當,即時等號成立.故填:.【點睛】本小題主要考查利用基本不等式求和式的最小值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.14、或【解析】
利用切線長最短時,取最小值找點:即過圓心作直線的垂線,求出垂足點.就切線的斜率是否存在分類討論,結(jié)合圓心到切線的距離等于半徑得出切線的方程.【詳解】設(shè)切線長為,則,所以當切線長取最小值時,取最小值,過圓心作直線的垂線,則點為垂足點,此時,直線的方程為,聯(lián)立,得,點的坐標為.①若切線的斜率不存在,此時切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設(shè)切線的方程為,即.由題意可得,化簡得,解得,此時,所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【點睛】本題考查過點的圓的切線方程的求解,考查圓的切線長相關(guān)問題,在過點引圓的切線問題時,要對直線的斜率是否存在進行分類討論,另外就是將直線與圓相切轉(zhuǎn)化為圓心到直線的距離等于半徑長,考查分析問題與解決問題的能力,屬于中等題.15、;【解析】
先利用輔助角公式對函數(shù)化簡,由可求解.【詳解】函數(shù),由,可得,所以函數(shù)的單調(diào)增區(qū)間為.故答案為:【點睛】本題考查了輔助角公式、正弦函數(shù)的圖像與性質(zhì),需熟記公式與性質(zhì),屬于基礎(chǔ)題.16、5【解析】
分別求得A,B的坐標,再用兩點間的距離公式求解.【詳解】根據(jù)題意令得所以令得所以所以故答案為:5【點睛】本題主要考查點坐標的求法和兩點間的距離公式,還考查了運算求解的能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)眾數(shù)為75分,中位數(shù)為分;(2)76.2分【解析】
(1)由眾數(shù)的概念及頻率分布直方圖可求得眾數(shù),根據(jù)中位數(shù)的概念可求得中位數(shù);.(2)由平均數(shù)的概念和頻率直方圖可求得平均數(shù).【詳解】(1)由眾數(shù)的概念及頻率分布直方圖可知,這50名學(xué)生成績的眾數(shù)為75分.因為數(shù)學(xué)競賽成績在的頻率為,數(shù)學(xué)競賽成績在的頻率為.所以中位數(shù)為.(2)這50名學(xué)生的平均成績?yōu)?【點睛】本題考查根據(jù)頻率直方圖求得數(shù)字特征,關(guān)鍵在于理解各數(shù)字特征的含義,屬于基礎(chǔ)題.18、(1);=.(2)【解析】試題分析:(1)先根據(jù)偶次根式非負得不等式,解不等式得A,B,再結(jié)合數(shù)軸求交,并,補(2)先根據(jù)得,再根據(jù)數(shù)軸得實數(shù)的取值范圍.試題解析:(1)若,則由已知有因此;,所以=.(2)∴,又==∴19、(1);(2)或.【解析】
(1)由直線平行則斜率相等,設(shè)出所求直線方程,利用M點到兩直線距離相等求解;(2)由直線垂直則斜率乘積為-1,設(shè)出所求直線,利用M點到兩直線距離相等求解.【詳解】(1)設(shè)與直線平行的另一邊所在直線方程為,則,解得,或(舍).所以與直線平行的正方形的另一邊所在直線的方程為.(2)設(shè)與直線垂直的正方形的邊所在直線方程為,則,解得,或.所以與直線垂直的正方形的邊所在的直線方程為或.【點睛】本題考查直線平行或垂直與斜率的關(guān)系,以及點到直線的距離公式,屬直線方程求解基礎(chǔ)題.20、(1)見解析(2)(3)【解析】
(1)由平面,得出,由菱形的性質(zhì)得出,利用直線與平面垂直的判定定理得出平面,再利用平面與平面垂直的判定定理可證出結(jié)論;(2)先計算出三棱錐的體積,并計算出的面積,利用等體積法計算出三棱錐的高,即為點到平面的距離;(3)由(1)平面,于此得知為直線與平面所成的角,由,得出平面,于此計算出,然后在中計算出即可.【詳解】(1)平面,平面,,四邊形是菱形,,平面;又平面,所以平面平面.(2)設(shè),連結(jié),則,四邊形是菱形,,,,設(shè)點到平面的距離為平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物流企業(yè)車輛掛靠業(yè)務(wù)及運營管理合同3篇
- 2024年北師大版選擇性必修2歷史上冊階段測試試卷
- 2024-2025學(xué)年江蘇省南通市海門市三上數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 2024年數(shù)據(jù)中心數(shù)據(jù)備份與恢復(fù)服務(wù)合同3篇
- 商業(yè)廣告與小學(xué)生閱讀理解能力的提升
- 2024年度行政協(xié)議人力資源配置合同2篇
- 從初創(chuàng)到成熟創(chuàng)新型企業(yè)報告設(shè)計
- 2024年物聯(lián)網(wǎng)智能手表研發(fā)與銷售合同
- 培養(yǎng)未來領(lǐng)袖科技教育在小學(xué)的應(yīng)用與影響
- 醫(yī)療視角下的學(xué)生早餐營養(yǎng)建議
- 貴州大學(xué)新型智庫建設(shè)實施方案
- 熱工設(shè)備安全操作和維護
- 當代世界經(jīng)濟與政治學(xué)習通超星期末考試答案章節(jié)答案2024年
- 2024年中國人保行測筆試題庫
- 初++中數(shù)學(xué)設(shè)計學(xué)校田徑運動會比賽場地+課件++人教版七年級數(shù)學(xué)上冊
- 2024年秋八年級英語上冊 Unit 7 Will people have robots教案 (新版)人教新目標版
- 2《永遇樂京口北固亭懷古》同步練習(含答案)統(tǒng)編版高中語文必修上冊-3
- 微積分試卷及規(guī)范標準答案6套
- 藍色國家科學(xué)基金16.9杰青優(yōu)青人才科學(xué)基金答辯模板
- 自來水的供水環(huán)保與生態(tài)協(xié)調(diào)
- 羽毛球館運營管理指南
評論
0/150
提交評論