宜春市重點中學(xué)2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第1頁
宜春市重點中學(xué)2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第2頁
宜春市重點中學(xué)2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第3頁
宜春市重點中學(xué)2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第4頁
宜春市重點中學(xué)2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

宜春市重點中學(xué)2025屆數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.底面是正方形,從頂點向底面作垂線,垂足是底面中心的四棱錐稱為正四棱錐.如圖,在正四棱錐中,底面邊長為1.側(cè)棱長為2,E為PC的中點,則異面直線PA與BE所成角的余弦值為()A. B. C. D.2.設(shè),則()A. B.C. D.3.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.4.已知角的終邊經(jīng)過點,則()A. B. C.-2 D.5.函數(shù)圖像的一個對稱中心是()A. B. C. D.6.如圖,在矩形中,,,點滿足,記,,,則的大小關(guān)系為()A. B.C. D.7.已知,滿足,則()A. B. C. D.8.已知,則的值等于()A. B. C. D.9.函數(shù)的最小正周期為π,若其圖象向左平移個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象()A.關(guān)于點對稱 B.關(guān)于點對稱C.關(guān)于直線對稱 D.關(guān)于直線對稱10.已知兩條直線與兩個平面,給出下列命題:①若,則;②若,則;③若,則;④若,則;其中正確的命題個數(shù)為A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.一湖中有不在同一直線的三個小島A、B、C,前期為開發(fā)旅游資源在A、B、C三島之間已經(jīng)建有索道供游客觀賞,經(jīng)測量可知AB兩島之間距離為3公里,BC兩島之間距離為5公里,AC兩島之間距離為7公里,現(xiàn)調(diào)查后發(fā)現(xiàn),游客對在同一圓周上三島A、B、C且位于(優(yōu)?。┮黄娘L(fēng)景更加喜歡,但由于環(huán)保、安全等其他原因,沒辦法盡可能一次游覽更大面積的湖面風(fēng)光,現(xiàn)決定在上選擇一個點D建立索道供游客游覽,經(jīng)研究論證為使得游覽面積最大,只需使得△ADC面積最大即可.則當(dāng)△ADC面積最大時建立索道AD的長為______公里.(注:索道兩端之間的長度視為線段)12.把二進(jìn)制數(shù)化為十進(jìn)制數(shù)是:______.13.在銳角中,則的值等于.14.在數(shù)列an中,a1=2,a15.等比數(shù)列的首項為,公比為,記,則數(shù)列的最大項是第___________項.16.下圖中的幾何體是由兩個有共同底面的圓錐組成.已知兩個圓錐的頂點分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點,B為底面圓周上的動點(不與A重合).下列四個結(jié)論:①三棱錐體積的最大值為;②直線PB與平面PAQ所成角的最大值為;③當(dāng)直線BQ與AP所成角最小時,其正弦值為;④直線BQ與AP所成角的最大值為;其中正確的結(jié)論有___________.(寫出所有正確結(jié)論的編號)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的公比,前項和為,且.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的最大項的值與最小項的值.19.已知為數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和.20.已知的三個頂點為.(1)求過點且平行于的直線方程;(2)求過點且與、距離相等的直線方程.21.已知數(shù)列中,,點在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項;(3)設(shè)、分別為數(shù)列、的前項和是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

可采用建立空間直角坐標(biāo)系的方法來求兩條異面直線所成的夾角,【詳解】如圖所示,以正方形ABCD的中心為坐標(biāo)原點,DA方向為x軸,AB方向為y軸,OP為z軸,建立空間直角坐標(biāo)系,,,由幾何關(guān)系可求得,,,,為中點,,,,答案選B.【點睛】解決異面直線問題常用兩種基本方法:異面直線轉(zhuǎn)化成共面直線、空間向量建系法2、C【解析】

函數(shù),函數(shù)且,求出【詳解】因為且且所以故選:C【點睛】本題考查的是與反三角函數(shù)有關(guān)的定義域問題,較簡單.3、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設(shè)內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選4、B【解析】按三角函數(shù)的定義,有.5、B【解析】

由題得,解出x的值即得函數(shù)圖像的一個對稱中心.【詳解】由題得,所以,所以圖像的對稱中心是.當(dāng)k=1時,函數(shù)的對稱中心為.故選B【點睛】本題主要考查三角函數(shù)圖像的對稱中心的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.6、C【解析】

可建立合適坐標(biāo)系,表示出a,b,c的大小,運用作差法比較大小.【詳解】以為圓心,以所在直線為軸、軸建立坐標(biāo)系,則,,,設(shè),則,,,,,,,,故選C.【點睛】本題主要考查學(xué)生的建模能力,意在考查學(xué)生的理解能力及分析能力,難度中等.7、A【解析】

根據(jù)對數(shù)的化簡公式得到,由指數(shù)的運算公式得到=,由對數(shù)的性質(zhì)得到>0,,進(jìn)而得到結(jié)果.【詳解】已知,=,>0,進(jìn)而得到.故答案為A.【點睛】本題考查了指對函數(shù)的運算公式和對數(shù)函數(shù)的性質(zhì);比較大小常用的方法有:兩式做差和0比較,分式注意同分,進(jìn)行因式分解為兩式相乘的形式;或者利用不等式求得最值,判斷最值和0的關(guān)系.8、D【解析】,所以,則,故選擇D.9、C【解析】

利用最小正周期為π,求出的值,根據(jù)平移得出,然后利用對稱性求解.【詳解】因為函數(shù)的最小正周期為π,所以,圖象向左平移個單位后得到,由得到的函數(shù)是奇函數(shù)可得,即.令得,,故A,B均不正確;令得,,時可得C正確.故選C.【點睛】本題主要考查三角函數(shù)的圖像變換和性質(zhì).平移變換時注意平移方向和對解析式的影響,性質(zhì)求解一般利用整體換元意識來處理.10、A【解析】

結(jié)合線面平行定理和舉例判斷.【詳解】若,則可能平行或異面,故①錯誤;若,則可能與的交線平行,故②錯誤;若,則,所以,故③正確;若,則可能平行,相交或異面,故④錯誤;故選A.【點睛】本題線面關(guān)系的判斷,主要依據(jù)線面定理和舉例排除.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)題意畫出草圖,根據(jù)余弦定理求出的值,設(shè)點到的距離為,可得,分析可知取最大時,取最大值,然后再對為中點和不是中點兩種情況分析,可得的最大值為,然后再根據(jù)圓的有關(guān)性質(zhì)和正弦定理,即可求出結(jié)果.【詳解】根據(jù)題意可作出及其外接圓,連接,交于點,連接,如下圖:在中,由余弦定理,由為的內(nèi)角,可知,所以.設(shè)的半徑為,點到的距離為,點到的距離為,則,故取最大時,取最大值.①當(dāng)為中點時,由垂徑定理知,即,此時,故;②當(dāng)不是中點時,不與垂直,設(shè)此時與所成角為,則,故;由垂線段最短知,此時;綜上,當(dāng)為中點時,到的距離最大,最大值為;由圓周角定理可知,,由垂徑定理知,此時點為優(yōu)弧的中點,故,則,在中,由正弦定理得所以.所以當(dāng)△ADC面積最大時建立索道AD的長為公里.故答案為:.【點評】本題考查了正弦定理、余弦定理在解決實際問題中的應(yīng)用,屬于中檔題.12、51【解析】110011(2)13、2【解析】設(shè)由正弦定理得14、2+【解析】

因為a1∴a∴=(=2+ln15、【解析】

求得,則可將問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,利用二次函數(shù)的基本性質(zhì)求解即可.【詳解】由等比數(shù)列的通項公式可得,,則問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,,當(dāng)時,取得最大值,此時為偶數(shù).因此,的最大項是第項.故答案為:.【點睛】本題考查等比數(shù)列前項積最值的計算,將問題進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.16、①③【解析】

由①可知只需求點A到面的最大值對于②,求直線PB與平面PAQ所成角的最大值,可轉(zhuǎn)化為到軸截面距離的最大值問題進(jìn)行求解對于③④,可采用建系法進(jìn)行分析【詳解】選項①如圖所示,當(dāng)時,四棱錐體積最大,選項②中,線PB與平面PAQ所成角最大值的正弦值為,所以選項③和④,如圖所示:以垂直于方向為x軸,方向為y軸,方向為z軸,其中設(shè),.,設(shè)直線BQ與AP所成角為,,當(dāng)時,取到最大值,,此時,由于,,,所以取不到答案選①、③【點睛】幾何體的旋轉(zhuǎn)問題需要結(jié)合動態(tài)圖形和立體幾何基本知識進(jìn)行求解,需找臨界點是正確解題的關(guān)鍵,遇到難以把握的最值問題,可采用建系法進(jìn)行求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)根據(jù)條件列出等式,求解公比后即可求解出通項公式;(2)錯位相減法求和,注意對于“錯位”的理解.【詳解】解:(1)由,得,則∴,∴數(shù)列的通項公式為.(2)由,∴,①,②①②,得,∴.【點睛】本題考查等比數(shù)列通項和求和,難度較易.對于等差乘以等比的形式的數(shù)列,求和注意選用錯位相減法.18、(1);(2)最大項的值為,最小項的值為【解析】試題分析:(1)根據(jù)成等差數(shù)列,利用等比數(shù)列通項公式和前項和公式,展開.利用等比數(shù)列不是遞減數(shù)列,可得值,進(jìn)而求通項.(2)首先根據(jù)(1)得到,進(jìn)而得到,但是等比數(shù)列的公比是負(fù)數(shù),所以分兩種情況:當(dāng)?shù)漠?dāng)n為奇數(shù)時,隨n的增大而減小,所以;當(dāng)n為偶數(shù)時,隨n的增大而增大,所以,然后可判斷最值.試題解析:(1)設(shè)的公比為q.由成等差數(shù)列,得.即,則.又不是遞減數(shù)列且,所以.故.(2)由(1)利用等比數(shù)列的前項和公式,可得得當(dāng)n為奇數(shù)時,隨n的增大而減小,所以,故.當(dāng)n為偶數(shù)時,隨n的增大而增大,所以,故.綜上,對于,總有,所以數(shù)列最大項的值為,最小值的值為.考點:等差中項,等比通項公式;數(shù)列增減性的討論求最值.19、(1)(2)【解析】

(1)先根據(jù)和項與通項關(guān)系得項之間遞推關(guān)系,再根據(jù)等比數(shù)列定義以及通項公式求結(jié)果,(2)根據(jù)錯位相減法求結(jié)果.【詳解】(1)因為,所以當(dāng)時,,相減得,,當(dāng)時,,因此數(shù)列為首項為,2為公比的等比數(shù)列,(2),所以,則2,兩式相減得.【點睛】本題考查錯位相減法求和以及由和項求通項,考查基本求解能力,屬中檔題.20、(1);(2).【解析】

(1)先由兩點寫出直線BC的方程,再根據(jù)點斜式寫出目標(biāo)直線的方程;(2)過點B且與直線AC平行的直線即為所求,注意垂直平分線不過點B,故舍去.【詳解】(1)由、兩點的坐標(biāo)可得,因為待求直線與直線BC平行,故其斜率為由點斜式方程可得目標(biāo)直線方程為整理得.(2)由、點的坐標(biāo)可知,其中點坐標(biāo)為又直線AC沒有斜率,故其垂直平分線為,此直線不經(jīng)過點B,故垂直平分線舍去;則滿足題意的直線為與直線AC平行的直線,即.綜上所述,滿足題意的直線方程為.【點睛】本題考查直線方程的求解,屬基礎(chǔ)題.21、(1)證明過程見詳解;(2);(3)存在實數(shù),使得數(shù)列為等差數(shù)列.【解析】

(1)先由題意得到,再由,得到,即可證明結(jié)論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項;(3)把數(shù)列an}、{bn}通項公式代入an+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論