版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆山西省臨汾市侯馬市、襄汾縣中考押題數(shù)學預測卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.2.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(
)A.30° B.35° C.40° D.50°3.已知直線與直線的交點在第一象限,則的取值范圍是()A. B. C. D.4.如果關于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥45.某班組織了針對全班同學關于“你最喜歡的一項體育活動”的問卷調(diào)查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學生 D.最喜歡田徑的人數(shù)占總人數(shù)的10%6.若點都是反比例函數(shù)的圖象上的點,并且,則下列各式中正確的是(()A. B. C. D.7.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB8.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.9.如圖,已知,那么下列結論正確的是()A. B. C. D.10.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值211.一元二次方程(x+2017)2=1的解為()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣201712.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.14.某社區(qū)有一塊空地需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數(shù)關系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.15.在臨桂新區(qū)建設中,需要修一段全長2400m的道路,為了盡量減少施工對縣城交通工具所造成的影響,實際工作效率比原計劃提高了20%,結果提前8天完成任務,求原計劃每天修路的長度.若設原計劃每天修路xm,則根據(jù)題意可得方程.16.函數(shù)的圖象不經(jīng)過第__________象限.17.A,B兩市相距200千米,甲車從A市到B市,乙車從B市到A市,兩車同時出發(fā),已知甲車速度比乙車速度快15千米/小時,且甲車比乙車早半小時到達目的地.若設乙車的速度是x千米/小時,則根據(jù)題意,可列方程____________.18.若不等式組x<4x<m的解集是x<4,則m三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,A,B,C三個糧倉的位置如圖所示,A糧倉在B糧倉北偏東26°,180千米處;C糧倉在B糧倉的正東方,A糧倉的正南方.已知A,B兩個糧倉原有存糧共450噸,根據(jù)災情需要,現(xiàn)從A糧倉運出該糧倉存糧的支援C糧倉,從B糧倉運出該糧倉存糧的支援C糧倉,這時A,B兩處糧倉的存糧噸數(shù)相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A,B兩處糧倉原有存糧各多少噸?(2)C糧倉至少需要支援200噸糧食,問此調(diào)撥計劃能滿足C糧倉的需求嗎?(3)由于氣象條件惡劣,從B處出發(fā)到C處的車隊來回都限速以每小時35公里的速度勻速行駛,而司機小王的汽車油箱的油量最多可行駛4小時,那么小王在途中是否需要加油才能安全的回到B地?請你說明理由.20.(6分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)請連結,并求出的面積;(3)直接寫出當時,的解集.21.(6分)如圖,在等邊△ABC中,點D是AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.22.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).23.(8分)如圖,在矩形ABCD中,對角線AC,BD相交于點O.(1)畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結論.24.(10分)先化簡再求值:÷(﹣1),其中x=.25.(10分)如圖,直線與第一象限的一支雙曲線交于A、B兩點,A在B的左邊.(1)若=4,B(3,1),求直線及雙曲線的解析式:并直接寫出不等式的解集;(2)若A(1,3),第三象限的雙曲線上有一點C,接AC、BC,設直線BC解析式為;當AC⊥AB時,求證:k為定值.26.(12分)如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個定點坐標分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).畫出△ABC關于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標:A1(,),B1(,),C1(,);畫出點C關于y軸的對稱點C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是.27.(12分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖2、C【解析】試題分析:已知m∥n,根據(jù)平行線的性質(zhì)可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質(zhì).3、C【解析】
根據(jù)題意畫出圖形,利用數(shù)形結合,即可得出答案.【詳解】根據(jù)題意,畫出圖形,如圖:當時,兩條直線無交點;當時,兩條直線的交點在第一象限.故選:C.【點睛】本題主要考查兩個一次函數(shù)的交點問題,能夠數(shù)形結合是解題的關鍵.4、D【解析】
由被開方數(shù)非負結合根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.5、C【解析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項進行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項錯誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學生,故C選項正確;D.最喜歡田徑的人數(shù)占總人數(shù)的=8%,故D選項錯誤,故選C.【點睛】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進行解題是關鍵.6、B【解析】
解:根據(jù)題意可得:∴反比例函數(shù)處于二、四象限,則在每個象限內(nèi)為增函數(shù),且當x<0時y>0,當x>0時,y<0,∴<<.7、B【解析】
作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點睛】了解中垂線的作圖規(guī)則是解題的關鍵.8、D【解析】
根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.9、A【解析】
已知AB∥CD∥EF,根據(jù)平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應關系,避免錯選其他答案.10、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.11、A【解析】
利用直接開平方法解方程.【詳解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故選A.【點睛】本題考查了解一元二次方程-直接開平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程.12、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據(jù)角平分線的性質(zhì)得到OD=OE=OF,根據(jù)三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故選C.【點睛】考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.14、150【解析】設綠化面積與工作時間的函數(shù)解析式為,因為函數(shù)圖象經(jīng)過,兩點,將兩點坐標代入函數(shù)解析式得得,將其代入得,解得,∴一次函數(shù)解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.15、.【解析】試題解析:∵原計劃用的時間為:實際用的時間為:∴可列方程為:故答案為16、三.【解析】
先根據(jù)一次函數(shù)判斷出函數(shù)圖象經(jīng)過的象限,進而可得出結論.【詳解】解:∵一次函數(shù)中,此函數(shù)的圖象經(jīng)過一、二、四象限,不經(jīng)過第三象限,故答案為:三.【點睛】本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)中,當,時,函數(shù)圖象經(jīng)過一、二、四象限.17、200x【解析】
直接利用甲車比乙車早半小時到達目的地得出等式即可.【詳解】解:設乙車的速度是x千米/小時,則根據(jù)題意,可列方程:200x故答案為:200x【點睛】此題主要考查了由實際問題抽象出分式方程,正確表示出兩車所用時間是解題關鍵.18、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)A、B兩處糧倉原有存糧分別是270,1噸;(2)此次調(diào)撥能滿足C糧倉需求;(3)小王途中須加油才能安全回到B地.【解析】
(1)由題意可知要求A,B兩處糧倉原有存糧各多少噸需找等量關系,即A處存糧+B處存糧=450噸,A處存糧的五分之二=B處存糧的五分之三,據(jù)等量關系列方程組求解即可;(2)分別求出A處和B處支援C處的糧食,將其加起來與200噸比較即可;(3)由題意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的長,可以運用三角函數(shù)解直角三角形.【詳解】(1)設A,B兩處糧倉原有存糧x,y噸根據(jù)題意得:解得:x=270,y=1.答:A,B兩處糧倉原有存糧分別是270,1噸.(2)A糧倉支援C糧倉的糧食是×270=162(噸),B糧倉支援C糧倉的糧食是×1=72(噸),A,B兩糧倉合計共支援C糧倉糧食為162+72=234(噸).∵234>200,∴此次調(diào)撥能滿足C糧倉需求.(3)如圖,根據(jù)題意知:∠A=26°,AB=1千米,∠ACB=90°.在Rt△ABC中,sin∠BAC=,∴BC=AB?sin∠BAC=1×0.44=79.2.∵此車最多可行駛4×35=140(千米)<2×79.2,∴小王途中須加油才能安全回到B地.【點睛】求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.20、(1),;(2)4;(3).【解析】
(1)連接CB,CD,依據(jù)四邊形BODC是正方形,即可得到B(1,2),點C(2,2),利用待定系數(shù)法即可得到反比例函數(shù)和一次函數(shù)的解析式;
(2)依據(jù)OB=2,點A的橫坐標為-4,即可得到△AOB的面積為:2×4×=4;
(3)依據(jù)數(shù)形結合思想,可得當x<1時,k1x+b?>1的解集為:-4<x<1.【詳解】解:(1)如圖,連接,,∵⊙C與軸,軸相切于點D,,且半徑為,,,∴四邊形是正方形,,,點,把點代入反比例函數(shù)中,解得:,∴反比例函數(shù)解析式為:,∵點在反比例函數(shù)上,把代入中,可得,,把點和分別代入一次函數(shù)中,得出:,解得:,∴一次函數(shù)的表達式為:;(2)如圖,連接,,點的橫坐標為,的面積為:;(3)由,根據(jù)圖象可知:當時,的解集為:.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點依據(jù)待定系數(shù)法求函數(shù)解析式,解題的關鍵是求出C,B點坐標.21、見解析【解析】試題分析:根據(jù)等邊三角形的性質(zhì)得出AC=BC,∠B=∠ACB=60°,根據(jù)旋轉(zhuǎn)的性質(zhì)得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根據(jù)SAS推出△BCD≌△ACE,根據(jù)全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根據(jù)平行線的判定得出即可.試題解析:∵△ABC是等邊三角形,∴AC=BC,∠B=∠ACB=60°,∵線段CD繞點C順時針旋轉(zhuǎn)60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD與△ACE中,,
∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.22、(1)見解析;(2)75﹣a.【解析】
(1)連接CD,求出∠ADC=90°,根據(jù)切線長定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過點D作⊙O的切線DE交AC于點E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.【點睛】本題考查了圓周角定理,切線的性質(zhì),切線長定理,等腰三角形的性質(zhì)和判定,勾股定理,扇形的面積,三角形的面積等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.23、(1)如圖所示見解析;(2)四邊形OCED是菱形.理由見解析.【解析】
(1)根據(jù)圖形平移的性質(zhì)畫出平移后的△DEC即可;
(2)根據(jù)圖形平移的性質(zhì)得出AC∥DE,OA=DE,故四邊形OCED是平行四邊形,再由矩形的性質(zhì)可知OA=OB,故DE=CE,由此可得出結論.【詳解】(1)如圖所示;(2)四邊形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四邊形OCED是平行四邊形.∵四邊形ABCD是矩形,∴OA=OB,∴DE=CE,∴四邊形OCED是菱形.【點睛】本題考查了作圖與矩形的性質(zhì),解題的關鍵是熟練的掌握矩形的性質(zhì)與根據(jù)題意作圖.24、【解析】分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.詳解:原式====當時,原式==.點睛:本題考查了分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.25、(1)1<x<3或x<0;(2)證明見解析.【解析】
(1)將B(3,1)代入,將B(3,1)代入,即可求出解析式;再根據(jù)圖像直接寫出不等式的解集;(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,△AGC∽△BHA,設B(m,)、C(n,),根據(jù)對應線段成比例即可得出mn=-9,聯(lián)立,得,根據(jù)根與系數(shù)的關系得,由此得出為定值.【詳解】解:(1)將B(3,1)代入,∴m=3,,將B(3,1)代入,∴,,∴,∴不等式的解集為1<x<3或x<0(2)過A作l∥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 24503-2024礦用圓環(huán)鏈驅(qū)動鏈輪
- 幼兒園承包合同的人力資源配置
- 進出口貿(mào)易合同參考樣本
- 培訓機構講師合作合同示范
- 污水處理站運營托管合同
- 旅行社餐飲合作合同
- 規(guī)范的人民調(diào)解協(xié)議書格式
- 版權合作共享協(xié)議書
- 擔保期限的法律規(guī)定2024年
- 2024年噴漆工職業(yè)危害告知書
- 工程水文學題庫及題解(全)
- 個人征信承諾書
- 【學生基本信息表】樣本
- 【類文閱讀】25.古人談讀書(試題)五年級語文上冊 部編版(含答案、解析)
- 新疆維吾爾自治區(qū)吐魯番市2023-2024學年九年級上學期期中數(shù)學試題
- 小學信息技術《認識“畫圖”》說課稿
- 魯教版七年級上冊地理知識點匯總
- 新課標-人教版數(shù)學六年級上冊第四單元《比》單元教材解讀
- 全國高中青年數(shù)學教師優(yōu)質(zhì)課大賽一等獎《函數(shù)的單調(diào)性》課件
- 部編版道德與法治 四年級上冊 單元作業(yè)設計《為父母分擔》
- 核酸的生物合成 完整版
評論
0/150
提交評論