版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖南省寧鄉(xiāng)一中等部分中學(xué)高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線和,若,則實數(shù)的值為A.1或 B.或 C.2或 D.或2.已知向量,則與夾角的大小為()A. B. C. D.3.化簡=()A. B.C. D.4.在ΔABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π5.已知等差數(shù)列中,,.若公差為某一自然數(shù),則n的所有可能取值為()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,706.已知函數(shù),若對于恒成立,則實數(shù)的取值范圍為()A. B. C. D.7.《九章算術(shù)》中有這樣一個問題:今有竹九節(jié),欲均減容之(其意為:使容量均勻遞減),上三節(jié)容四升,下三節(jié)容二升,中三節(jié)容幾何?()A.二升 B.三升 C.四升 D.五升8.已知m,n是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則9.已知函數(shù)在上是減函數(shù),則實數(shù)的取值范圍是()A. B. C. D.10.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,b=c,且滿足=,若點O是△ABC外一點,∠AOB=θ(0<θ<π),OA=2OB=2,則平面四邊形OACB面積的最大值是()A. B. C.3 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知且,則________12.已知l,m是平面外的兩條不同直線.給出下列三個論斷:①l⊥m;②m∥;③l⊥.以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題:__________.13.已知數(shù)列的通項公式為,則該數(shù)列的前1025項的和___________.14.在公差為的等差數(shù)列中,有性質(zhì):,根據(jù)上述性質(zhì),相應(yīng)地在公比為等比數(shù)列中,有性質(zhì):____________.15.已知等比數(shù)列的首項為,公比為,其前項和為,下列命題中正確的是______.(寫出全部正確命題的序號)(1)等比數(shù)列單調(diào)遞增的充要條件是,且;(2)數(shù)列:,,,……,也是等比數(shù)列;(3);(4)點在函數(shù)(,為常數(shù),且,)的圖像上.16.已知一個扇形的周長為4,則扇形面積的最大值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.現(xiàn)有一個算法框圖如圖所示。(1)試著將框圖的過程用一個函數(shù)來表示;(2)若從中隨機選一個數(shù)輸入,則輸出的滿足的概率是多少?18.已知函數(shù),(1)求的單調(diào)遞增區(qū)間.(2)求在區(qū)間的最大值和最小值.19.對于定義域相同的函數(shù)和,若存在實數(shù),使,則稱函數(shù)是由“基函數(shù),”生成的.(1)若函數(shù)是“基函數(shù),”生成的,求實數(shù)的值;(2)試利用“基函數(shù),”生成一個函數(shù),且同時滿足:①是偶函數(shù);②在區(qū)間上的最小值為.求函數(shù)的解析式.20.在平面直角坐標系中,已知點與兩個定點,的距離之比為.(1)求點的坐標所滿足的關(guān)系式;(2)求面積的最大值;(3)若恒成立,求實數(shù)的取值范圍.21.研究正弦函數(shù)的性質(zhì)(1)寫出其單調(diào)增區(qū)間的表達式(2)利用五點法,畫出的大致圖像(3)用反證法證明的最小正周期是
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
利用直線與直線垂直的性質(zhì)直接求解.【詳解】∵直線和,若,∴,得,解得或,∴實數(shù)的值為或.故選:C.【點睛】本題考查直線與直線垂直的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.2、D【解析】
。分別求出,,,利用即可得出答案.【詳解】設(shè)與的夾角為故選:D【點睛】本題主要考查了求向量的夾角,屬于基礎(chǔ)題.3、D【解析】
根據(jù)向量的加法與減法的運算法則,即可求解,得到答案.【詳解】由題意,根據(jù)向量的運算法則,可得=++==,故選D.【點睛】本題主要考查了向量的加法與減法的運算法則,其中解答中熟記向量的加法與減法的運算法則,準確化簡、運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.4、A【解析】
利用正弦定理可求得sinB=12【詳解】因為c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【點睛】本題主要考查正弦定理的運用,難度較小.5、B【解析】試題分析:由等差數(shù)列的通項公式得,公差,所以,可能為,的所有可能取值為選.考點:1.等差數(shù)列及其通項公式;2.數(shù)的整除性.6、A【解析】
首先設(shè),將題意轉(zhuǎn)化為,即可,再分類討論求出,解不等式組即可.【詳解】,恒成立,等價于,恒成立.令,對稱軸為.即等價于,即可.當(dāng)時,得到,解得:.當(dāng)時,得到,解得:.當(dāng)時,得到,解得:.綜上所述:.故選:A【點睛】本題主要考查二次不等式的恒成立問題,同時考查了二次函數(shù)的最值問題,分類討論是解題的關(guān)鍵,屬于中檔題.7、B【解析】
由題意可得,上、中、下三節(jié)的容量成等差數(shù)列.再利用等差數(shù)列的性質(zhì),求出中三節(jié)容量,即可得到答案.【詳解】由題意,上、中、下三節(jié)的容量成等差數(shù)列,上三節(jié)容四升,下三節(jié)容二升,則中三節(jié)容量為,故選B.【點睛】本題主要考查了等差數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟記等差數(shù)列的等差中項公式是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.8、C【解析】
利用線面垂直、線面平行、面面垂直的性質(zhì)定理分別對選項分析選擇.【詳解】對于A,若,,則或者;故A錯誤;對于B,若,則可能在內(nèi)或者平行于;故B錯誤;對于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質(zhì)定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質(zhì)定理可得,又,∴;故C正確;對于D.若,,則與可能垂直,如墻角;故D錯誤;故選:C.【點睛】本題考查了面面垂直、線面平行、線面垂直的性質(zhì)定理及應(yīng)用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運用定理是關(guān)鍵.9、C【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性,結(jié)合對數(shù)型函數(shù)的定義域列不等式組,解不等式組求得的取值范圍.【詳解】由于的底數(shù)為,而函數(shù)在上是減函數(shù),根據(jù)復(fù)合函數(shù)單調(diào)性同增異減可知,結(jié)合對數(shù)型函數(shù)的定義域得,解得.故選:C【點睛】本小題主要考查根據(jù)對數(shù)型復(fù)合函數(shù)單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.10、A【解析】
根據(jù)正弦和角公式化簡得是正三角形,再將平面四邊形OACB面積表示成的三角函數(shù),利用三角函數(shù)求得最值.【詳解】由已知得:即所以即又因為所以所以又因為所以是等邊三角形.所以在中,由余弦定理得且因為平面四邊形OACB面積為當(dāng)時,有最大值,此時平面四邊形OACB面積有最大值,故選A.【點睛】本題關(guān)鍵在于把所求面積表示成角的三角函數(shù),屬于難度題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)數(shù)列極限的方法求解即可.【詳解】由題,故.又.故.故.故答案為:【點睛】本題主要考查了數(shù)列極限的問題,屬于基礎(chǔ)題型.12、如果l⊥α,m∥α,則l⊥m或如果l⊥α,l⊥m,則m∥α.【解析】
將所給論斷,分別作為條件、結(jié)論加以分析.【詳解】將所給論斷,分別作為條件、結(jié)論,得到如下三個命題:(1)如果l⊥α,m∥α,則l⊥m.正確;(2)如果l⊥α,l⊥m,則m∥α.正確;(3)如果l⊥m,m∥α,則l⊥α.不正確,有可能l與α斜交、l∥α.【點睛】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.13、2039【解析】
根據(jù)所給分段函數(shù),依次列舉出當(dāng)時的值,即可求得的值.【詳解】當(dāng)時,,當(dāng)時,,,共1個2.當(dāng)時,,,共3個2.當(dāng)時,,,共7個2.當(dāng)時,,,共15個2.當(dāng)時,,,共31個2.當(dāng)時,,,共63個2.當(dāng)時,,,共127個2.當(dāng)時,,,共255個2.當(dāng)時,,,共511個2.當(dāng)時,,,共1個2.所以由以上可知故答案為:2039【點睛】本題考查了分段函數(shù)的應(yīng)用,由所給式子列舉出各個項,即可求和,屬于中檔題.14、【解析】
根據(jù)題中條件,類比等差數(shù)列的性質(zhì),可直接得出結(jié)果.【詳解】因為在公差為的等差數(shù)列中,有性質(zhì):,類比等差數(shù)列的性質(zhì),可得:在公比為等比數(shù)列中,故答案為:【點睛】本題主要考查類比推理,只需根據(jù)題中條件,結(jié)合等差數(shù)列與等比數(shù)列的特征,即可得出結(jié)果,屬于??碱}型.15、(3)【解析】
根據(jù)遞增數(shù)列的概念,以及等比數(shù)列的通項公式,充分條件與必要條件的概念,可判斷(1);令,為偶數(shù),可判斷(2);根據(jù)等比數(shù)列的性質(zhì),直接計算,可判斷(3);令,結(jié)合題意,可判斷(4),進而可得出結(jié)果.【詳解】(1)若等比數(shù)列單調(diào)遞增,則,所以或,故且不是等比數(shù)列單調(diào)遞增的充要條件;(1)錯;(2)若,為偶數(shù),則,,因等比數(shù)列中的項不為,故此時數(shù)列,,,……,不成等比數(shù)列;(2)錯;(3),所以(3)正確;(4)若,則,若點在函數(shù)的圖像上,則,因,,故不能對任意恒成立;故(4)錯.故答案為:(3)【點睛】本題主要考命題真假的判定,熟記等比數(shù)列的性質(zhì),以及等比數(shù)列的通項公式與求和公式即可,屬于??碱}型.16、1【解析】
表示出扇形的面積,利用二次函數(shù)的單調(diào)性即可得出.【詳解】設(shè)扇形的半徑為,圓心角為,則弧長,,即,該扇形的面積,當(dāng)且僅當(dāng)時取等號.該扇形的面積的最大值為.故答案:.【點睛】本題考查了弧長公式與扇形的面積計算公式、二次函數(shù)的單調(diào)性,考查了計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)輸出結(jié)果的條件可得定義域;根據(jù)最終的條件結(jié)構(gòu)可得到不同區(qū)間內(nèi)的解析式,從而得到函數(shù)解析式;(2)分別在兩段區(qū)間內(nèi)求得不等式的解集,根據(jù)幾何概型計算公式求得結(jié)果.【詳解】(1)由程序框圖可知,若要輸出結(jié)果,根據(jù)條件結(jié)構(gòu)可知,當(dāng)時,;當(dāng)時,框圖可用函數(shù)來表示(2)當(dāng)時,在上無解當(dāng)時,在上解集為:所求概率為:【點睛】本題考查讀懂程序框圖的功能、幾何概型中的長度型問題的求解;關(guān)鍵是能夠根據(jù)三角函數(shù)的值域準確求解出自變量的取值范圍,從而利用幾何概型的知識來進行求解.18、(1),;(2)最大值為,最小值為【解析】
利用二倍角公式、兩角和差正弦公式和輔助角公式可化簡出;(1)令,解出的范圍即為所求單調(diào)遞增區(qū)間;(2)利用的范圍可求得所處的范圍,整體對應(yīng)正弦函數(shù)圖象可確定最大值和最小值取得時的值,進而求得最值.【詳解】(1)令,,解得:,的單調(diào)遞增區(qū)間為,(2)當(dāng)時,當(dāng)時,取得最大值,最大值為當(dāng)時,取得最小值,最小值為【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間和最值的求解問題,涉及到利用兩角和差公式、二倍角公式和輔助角公式化簡三角函數(shù);關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,結(jié)合正弦函數(shù)的圖象與性質(zhì)來進行求解.19、(1).(2)【解析】
(1)根據(jù)基函數(shù)的定義列方程,比較系數(shù)后求得的值.(2)設(shè)出的表達式,利用為偶函數(shù),結(jié)合偶函數(shù)的定義列方程,化簡求得,由此化簡的表達式,構(gòu)造函數(shù),利用定義法證得在上的單調(diào)性,由此求得的最小值,也即的最小值,從而求得的最小值,結(jié)合題目所給條件,求出的值,即求得的解析式.【詳解】解:(1)由已知得,即,得,所以.(2)設(shè),則.由,得,整理得,即,即對任意恒成立,所以.所以.設(shè),,令,則,任取,且則,因為,且所以,,,故即,所以在單調(diào)遞增,所以,且當(dāng)時取到“”.所以,又在區(qū)間的最小值為,所以,且,此時,所以【點睛】本小題主要考查新定義函數(shù)的理解和運用,考查函數(shù)的單調(diào)性、奇偶性的運用,考查利用定義法證明函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查函數(shù)與方程的思想,綜合性較強,屬于中檔題.20、(1)(2)3;(3)【解析】
(1)根據(jù)題意,結(jié)合兩點間距離公式,可以得到等式,化簡后得到點的坐標所滿足的關(guān)系式;(2)設(shè)是曲線上任一點,求出的表達式,結(jié)合的取值范圍,可以求出面積的最大值;(3)恒成立,則恒成立.設(shè),當(dāng)它與圓相切時,取得最大和最小值,利用點到直線距離公式,可以求出取得最大和最小值,最后可以求出實數(shù)的取值范圍.【詳解】(1)設(shè)的坐標是,由,得,化簡得.(2)由(1)得,點在以為圓心,為半徑的圓上.設(shè)是曲線上任一點,則,又,故的最大值為:.(3)由(1)得:圓的方程是若恒成立,則恒成立.設(shè),當(dāng)它與圓相切時,取得最大和最小值,由得:,,故當(dāng)時,原不等式恒成立.【點睛】本題考查了求點的軌跡
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 原材料采購運輸合同
- 咖啡廳裝修保修協(xié)議范本
- 住宅建筑施工工序流程與標準
- 一年級美術(shù)教學(xué)計劃的家校合作
- 2024年度浙江省公共營養(yǎng)師之四級營養(yǎng)師真題練習(xí)試卷A卷附答案
- 2024年度海南省公共營養(yǎng)師之三級營養(yǎng)師模擬題庫及答案下載
- 生命與健康教育家長參與計劃
- 肝腎移植團隊管理制度
- 高效協(xié)同管理制度
- 項目管理與項目協(xié)調(diào)制度
- HG∕T 2058.1-2016 搪玻璃溫度計套
- 九宮數(shù)獨200題(附答案全)
- 泌尿科一科一品匯報課件
- 人員密集場所消防安全管理培訓(xùn)
- 白銅錫電鍍工藝
- 拜耳法氧化鋁生產(chǎn)工藝
- 2024年南京信息職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 部編版二年級下冊道德與法治第二單元《我們好好玩》全部教案
- 幼兒園利劍護蕾專項行動工作方案總結(jié)與展望
- 合同信息管理方案模板范文
- 2024年大唐云南發(fā)電有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論