版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省寧波市達(dá)標(biāo)名校2025屆高一下數(shù)學(xué)期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知變量x,y滿足約束條件x+y-2≥0,y≤2,x-y≤0,則A.2 B.3 C.4 D.62.若,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則3.設(shè)、滿足約束條件,則的最大值為()A. B.C. D.4.不等式所表示的平面區(qū)域是()A. B.C. D.5.若正項數(shù)列的前項和為,滿足,則()A. B. C. D.6.直線與、為端點(diǎn)的線段有公共點(diǎn),則k的取值范圍是()A. B.C. D.7.已知函數(shù)的最大值為,最小值為,則的值為()A. B. C. D.8.中,角的對邊分別為,且,則角()A. B. C. D.9.已知數(shù)列為等差數(shù)列,若,則()A. B. C. D.10.設(shè)a>0,b>0,若是和的等比中項,則的最小值為()A.6 B. C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.無限循環(huán)小數(shù)化成最簡分?jǐn)?shù)為________12.已知正實數(shù)滿足,則的值為_____________.13.函數(shù)在的值域是__________________.14.?dāng)?shù)列中,,則____________.15.若直線與圓相切,則________.16.函數(shù)的值域是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期;(2)求在區(qū)間上的最大值和最小值,并分別寫出相應(yīng)的的值.18.已知數(shù)列滿足:,,.(1)求證:數(shù)列為等差數(shù)列,并求出數(shù)列的通項公式;(2)記(),用數(shù)學(xué)歸納法證明:,19.已知函數(shù),(1)求的值;(2)求的單調(diào)遞增區(qū)間.20.已知圓:與圓:.(1)求兩圓的公共弦長;(2)過平面上一點(diǎn)向圓和圓各引一條切線,切點(diǎn)分別為,設(shè),求證:平面上存在一定點(diǎn)使得到的距離為定值,并求出該定值.21.已知二次函數(shù)滿足以下要求:①函數(shù)的值域為;②對恒成立。求:(1)求函數(shù)的解析式;(2)設(shè),求時的值域。
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
試題分析:把函數(shù)轉(zhuǎn)化為表示斜率為截距為平行直線系,當(dāng)截距最大時,最大,由題意知當(dāng)直線過和兩條直線交點(diǎn)時考點(diǎn):線性規(guī)劃的應(yīng)用.【詳解】請在此輸入詳解!2、D【解析】
根據(jù)不等式的基本性質(zhì)逐一判斷可得答案.【詳解】解:A.當(dāng)時,不成立,故A不正確;B.取,,則結(jié)論不成立,故B不正確;C.當(dāng)時,結(jié)論不成立,故C不正確;D.若,則,故D正確.故選:D.【點(diǎn)睛】本題主要考查不等式的基本性質(zhì),屬于基礎(chǔ)題.3、C【解析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時對應(yīng)的最優(yōu)解,再將最優(yōu)解代入目標(biāo)函數(shù)可得出結(jié)果.【詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點(diǎn)的坐標(biāo)為.平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時,直線在軸上的截距最大,此時取最大值,即,故選:C.【點(diǎn)睛】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結(jié)合在坐標(biāo)軸上的截距取最值來取得,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.4、D【解析】
根據(jù)二元一次不等式組表示平面區(qū)域進(jìn)行判斷即可.【詳解】不等式組等價為或則對應(yīng)的平面區(qū)域為D,
故選:D.【點(diǎn)睛】本題主要考查二元一次不等式組表示平區(qū)域,比較基礎(chǔ).5、A【解析】
利用,化簡,即可得到,令,所以,,令,所以原式為數(shù)列的前1000項和,求和即可得到答案?!驹斀狻慨?dāng)時,解得,由于為正項數(shù)列,故,由,所以,由,可得①,所以②②—①可得,化簡可得由于,所以,即,故為首項為1,公差為2的等差數(shù)列,則,令,所以,令所以原式故答案選A【點(diǎn)睛】本題主要考查數(shù)列通項公式與前項和的關(guān)系,以及利用裂項求數(shù)列的和,解題的關(guān)鍵是利用,求出數(shù)列的通項公式,有一定的綜合性。6、D【解析】
由直線方程可得直線恒過點(diǎn),利用兩點(diǎn)連線斜率公式可求得臨界值和,從而求得結(jié)果.【詳解】直線恒過點(diǎn)則,本題正確選項:【點(diǎn)睛】本題考查利用直線與線段有交點(diǎn)確定直線斜率取值范圍的問題,關(guān)鍵是能夠確定直線恒過的定點(diǎn),從而找到直線與線段有交點(diǎn)的臨界狀態(tài).7、B【解析】由解得為函數(shù)的定義域.令,消去得,圖像為橢圓的一部分,如下圖所示.,即直線,由圖可知,截距在點(diǎn)處取得最小值,在與橢圓相切的點(diǎn)處取得最大值.而,故最小值為.聯(lián)立,消去得,其判別式為零,即,解得(負(fù)根舍去),即,故.【點(diǎn)睛】本題主要考查含有兩個根號的函數(shù)怎樣求最大值和最小值.先用換元法,將原函數(shù)改寫成為一次函數(shù)的形式.然后利用和的關(guān)系,得到的可行域,本題中可行域為橢圓在第一象限的部分.然后利用,用截距的最大值和最小值來求函數(shù)的最大值和最小值.8、B【解析】
根據(jù)題意結(jié)合正弦定理,由題,可得三角形為等邊三角形,即可得解.【詳解】由題:即,中,由正弦定理可得:,即,兩邊同時平方:,由題,所以,即,所以,即為等邊三角形,所以.故選:B【點(diǎn)睛】此題考查利用正弦定理進(jìn)行邊角互化,根據(jù)邊的關(guān)系判斷三角形的形狀,求出三角形的內(nèi)角.9、D【解析】
由等差數(shù)列的性質(zhì)可得a7=,而tan(a2+a12)=tan(2a7),代值由三角函數(shù)公式化簡可得.【詳解】∵數(shù)列{an}為等差數(shù)列且a1+a7+a13=4π,∴a1+a7+a13=3a7=4π,解得a7=,∴tan(a2+a12)=tan(2a7)=tan=tan(3π﹣)=﹣tan=﹣故選D.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),涉及三角函數(shù)中特殊角的正切函數(shù)值的運(yùn)算,屬基礎(chǔ)題.10、D【解析】
試題分析:由題意a>0,b>0,且是和的等比中項,即,則,當(dāng)且僅當(dāng)時,即時取等號.考點(diǎn):重要不等式,等比中項二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點(diǎn)睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎(chǔ)題型.12、【解析】
將已知等式,兩邊同取以為底的對數(shù),求出,利用換底公式,即可求解.【詳解】,,,.故答案為:.【點(diǎn)睛】本題考查指對數(shù)之間的關(guān)系,考查對數(shù)的運(yùn)算以及應(yīng)用換底公式求值,屬于中檔題.13、【解析】
利用反三角函數(shù)的性質(zhì)及,可得答案.【詳解】解:,且,,∴,故答案為:【點(diǎn)睛】本題主要考查反三角函數(shù)的性質(zhì),相對簡單.14、1【解析】
利用極限運(yùn)算法則求解即可【詳解】故答案為:1【點(diǎn)睛】本題考查數(shù)列的極限,是基礎(chǔ)題15、1【解析】
利用圓心到直線的距離等于半徑列方程,解方程求得的值.【詳解】由于直線和圓相切,所以圓心到直線的距離,即,由于,所以.故答案為:【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.16、【解析】
根據(jù)反余弦函數(shù)的性質(zhì),可得函數(shù)在單調(diào)遞減函數(shù),代入即可求解.【詳解】由題意,函數(shù)的性質(zhì),可得函數(shù)在單調(diào)遞減函數(shù),又由,所以函數(shù)在的值域為.故答案為:.【點(diǎn)睛】本題主要考查了反余弦函數(shù)的單調(diào)性的應(yīng)用,其中解答中熟記反余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】試題分析:(1)利用和角公式及降次公式對f(x)進(jìn)行化簡,得到f(x)=,代入周期公式即可;(2)由x的范圍求出ωx+φ的范圍,結(jié)合正弦函數(shù)單調(diào)性得出最值和相應(yīng)的x.試題解析:(1),,,,,所以的最小正周期為.(2)∵,∴,當(dāng),即時,;當(dāng),即時,.點(diǎn)睛:三角函數(shù)式的化簡要遵循“三看”原則:一看角,這是重要一環(huán),通過看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式;二看函數(shù)名稱,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結(jié)構(gòu)特征,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如遇到分式要通分等.18、(1)證明見解析,;(2)見解析【解析】
(1)定義法證明:;(2)采用數(shù)學(xué)歸納法直接證明(注意步驟).【詳解】由可知:,則有,即,所以為等差數(shù)列,且首相為,公差,所以,故;(2),當(dāng)時,成立;假設(shè)當(dāng)時,不等式成立則:;當(dāng)時,,因為,所以,則,故時不等式成立,綜上可知:.【點(diǎn)睛】數(shù)學(xué)歸納法的一般步驟:(1)命題成立;(2)假設(shè)命題成立;(3)證明命題成立(一定要借助假設(shè),否則不能稱之為數(shù)學(xué)歸納法).19、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,(1)將代入,利用特殊角的三角函數(shù)可得的值;(2)利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間.詳解:(Ⅰ)===(Ⅱ)由題可得,函數(shù)的單調(diào)遞增區(qū)間是點(diǎn)睛:本題主要考查三角函數(shù)的單調(diào)性、三角函數(shù)的恒等變換,屬于中檔題.函數(shù)的單調(diào)區(qū)間的求法:(1)代換法:①若,把看作是一個整體,由求得函數(shù)的減區(qū)間,求得增區(qū)間;②若,則利用誘導(dǎo)公式先將的符號化為正,再利用①的方法,或根據(jù)復(fù)合函數(shù)的單調(diào)性規(guī)律進(jìn)行求解;(2)圖象法:畫出三角函數(shù)圖象,利用圖象求函數(shù)的單調(diào)區(qū)間.20、(1)(2)【解析】
(1)把兩圓方程相減得到公共弦所在直線方程,再根據(jù)點(diǎn)到直線距離公式與圓的垂徑定理求兩圓的公共弦長;(2)根據(jù)圓的切線長與半徑的關(guān)系代入化簡即可得到點(diǎn)的軌跡方程,進(jìn)而求解.【詳解】解:(1)由,相減得兩圓的公共弦所在直線方程為:,設(shè)(0,0)到的距離為,則所以,公共弦長為所以,公共弦長為.(2)證明:由題設(shè)得:化簡得:配方得:所以,存在定點(diǎn)使得到的距離為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 配電網(wǎng)負(fù)荷動態(tài)平衡技術(shù)
- 保險行業(yè)數(shù)字化轉(zhuǎn)型模板
- 職業(yè)導(dǎo)論-2018-2019年房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》真題匯編
- 房地產(chǎn)交易制度政策-《房地產(chǎn)基本制度與政策》真題匯編4
- 要怎么寫問卷調(diào)查報告
- 人教版三年級數(shù)學(xué)下冊第三單元復(fù)式統(tǒng)計表綜合卷(含答案)
- 山西省朔州市部分學(xué)校2024-2025學(xué)年八年級上學(xué)期期末生物學(xué)試卷(含答案)
- 產(chǎn)權(quán)技術(shù)合同在跨國技術(shù)轉(zhuǎn)移中的法律風(fēng)險與防范
- 蘇州中考英語模擬試卷單選題及答案
- 二零二五版房屋遺產(chǎn)繼承分配與拆除重建工程融資合同3篇
- DB34∕T 4444-2023 企業(yè)信息化系統(tǒng)上云評估服務(wù)規(guī)范
- 福建中閩能源股份有限公司招聘筆試題庫2024
- 2024年高中生物新教材同步必修第二冊學(xué)習(xí)筆記第5章 本章知識網(wǎng)絡(luò)
- 2024-2030年中國連續(xù)性腎臟替代治療(CRRT)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 腦血管疾病三級預(yù)防
- HSK標(biāo)準(zhǔn)教程5上-課件-L1
- 人教版五年級下冊數(shù)學(xué)預(yù)習(xí)單、學(xué)習(xí)單、檢測單
- JC-T 746-2023 混凝土瓦標(biāo)準(zhǔn)規(guī)范
- 如何落實管業(yè)務(wù)必須管安全
- 四年級上冊三位數(shù)乘除兩位數(shù)計算題
- 《水電工程招標(biāo)設(shè)計報告編制規(guī)程》
評論
0/150
提交評論