2022-2023學(xué)年云南省達(dá)標(biāo)名校高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
2022-2023學(xué)年云南省達(dá)標(biāo)名校高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
2022-2023學(xué)年云南省達(dá)標(biāo)名校高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
2022-2023學(xué)年云南省達(dá)標(biāo)名校高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
2022-2023學(xué)年云南省達(dá)標(biāo)名校高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,當(dāng)時,不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. B. C. D.2.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.3.的展開式中有理項(xiàng)有()A.項(xiàng) B.項(xiàng) C.項(xiàng) D.項(xiàng)4.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點(diǎn),若,則λ+μ的值為()A. B. C. D.5.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.106.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.7.已知函數(shù),若函數(shù)的所有零點(diǎn)依次記為,且,則()A. B. C. D.8.已知函數(shù),關(guān)于的方程R)有四個相異的實(shí)數(shù)根,則的取值范圍是(

)A. B. C. D.9.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.10.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件11.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.12.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學(xué)舉行了一次消防知識競賽,將參賽學(xué)生的成績進(jìn)行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績在區(qū)間的學(xué)生人數(shù)是__________.14.已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個整數(shù),則當(dāng)n最小時實(shí)數(shù)a的值為_____.15.各項(xiàng)均為正數(shù)的等比數(shù)列中,為其前項(xiàng)和,若,且,則公比的值為_____.16.已知拋物線的焦點(diǎn)為,過點(diǎn)且斜率為1的直線交拋物線于兩點(diǎn),,若線段的垂直平分線與軸交點(diǎn)的橫坐標(biāo)為,則的值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補(bǔ)充在上面問題中并作答.18.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.19.(12分)已知直線:與拋物線切于點(diǎn),直線:過定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.(1)求拋物線的方程及點(diǎn)的坐標(biāo);(2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請說明理由.20.(12分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實(shí)數(shù)a的取值范圍.21.(12分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.22.(10分)已知橢圓的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為,,為其右焦點(diǎn),,且該橢圓的離心率為;(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點(diǎn)作斜率為的直線交橢圓于軸上方的點(diǎn),交直線于點(diǎn),直線與橢圓的另一個交點(diǎn)為,直線與直線交于點(diǎn).若,求取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時是單調(diào)增函數(shù).則恒成立..令,則時,單調(diào)遞減,時單調(diào)遞增.故選:D.【點(diǎn)睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時求解參數(shù)問題,考查學(xué)生的分析問題的能力和計(jì)算求解的能力,難度較難.2、D【解析】

根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對分成三類,利用則,列方程,化簡后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.3、B【解析】

由二項(xiàng)展開式定理求出通項(xiàng),求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當(dāng),,,時,為有理項(xiàng),共項(xiàng).故選:B.【點(diǎn)睛】本題考查二項(xiàng)展開式項(xiàng)的特征,熟練掌握二項(xiàng)展開式的通項(xiàng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.4、B【解析】

建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點(diǎn)睛】本題主要考查了由平面向量線性運(yùn)算的結(jié)果求參數(shù),屬于中檔題.5、C【解析】

取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.6、D【解析】

根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因?yàn)楫?dāng)時,,即,所以,在上是增函數(shù),在中,因?yàn)椋?,,因?yàn)椋?,所以,即,所以,即故選:D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運(yùn)算求解的能力,屬于中檔題.7、C【解析】

令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點(diǎn)睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點(diǎn)是將所求的式子拆分為的形式.8、A【解析】=,當(dāng)時時,單調(diào)遞減,時,單調(diào)遞增,且當(dāng),當(dāng),

當(dāng)時,恒成立,時,單調(diào)遞增且,方程R)有四個相異的實(shí)數(shù)根.令=則,,即.9、D【解析】

根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時,取最大值,又對所有成立,所以,解得,故選:D.【點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.10、B【解析】

求得的二項(xiàng)展開式的通項(xiàng)為,令時,可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計(jì)算能力,難度較易.11、A【解析】

將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因?yàn)椋?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運(yùn)算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大?。蝗粽鏀?shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大?。蝗粽鏀?shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.12、D【解析】

先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點(diǎn)睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、30【解析】

根據(jù)頻率直方圖中數(shù)據(jù)先計(jì)算樣本容量,再計(jì)算成績在80~100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區(qū)間的學(xué)生人數(shù)是.故答案為:30【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生綜合分析,數(shù)據(jù)處理,數(shù)形運(yùn)算的能力,屬于基礎(chǔ)題.14、-1【解析】

討論三種情況,a<0時,根據(jù)均值不等式得到a(﹣a)≤﹣14,計(jì)算等號成立的條件得到答案.【詳解】已知關(guān)于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0時,[x﹣(a)](x﹣4)<0,其中a0,故解集為(a,4),由于a(﹣a)≤﹣14,當(dāng)且僅當(dāng)﹣a,即a=﹣1時取等號,∴a的最大值為﹣4,當(dāng)且僅當(dāng)a4時,A中共含有最少個整數(shù),此時實(shí)數(shù)a的值為﹣1;②a=0時,﹣4(x﹣4)>0,解集為(﹣∞,4),整數(shù)解有無窮多,故a=0不符合條件;③a>0時,[x﹣(a)](x﹣4)>0,其中a4,∴故解集為(﹣∞,4)∪(a,+∞),整數(shù)解有無窮多,故a>0不符合條件;綜上所述,a=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了解不等式,均值不等式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.15、【解析】

將已知由前n項(xiàng)和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項(xiàng)均為正數(shù),舍根得解.【詳解】因?yàn)榧从值缺葦?shù)列各項(xiàng)均為正數(shù),故故答案為:【點(diǎn)睛】本題考查在等比數(shù)列中由前n項(xiàng)和關(guān)系求公比,屬于基礎(chǔ)題.16、1【解析】

設(shè),寫出直線方程代入拋物線方程后應(yīng)用韋達(dá)定理求得,由拋物線定義得焦點(diǎn)弦長,求得,再寫出的垂直平分線方程,得,從而可得結(jié)論.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,直線的方程為,據(jù)得.設(shè),則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點(diǎn)睛】本題考查拋物線的焦點(diǎn)弦問題,根據(jù)拋物線的定義表示出焦點(diǎn)弦長是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、詳見解析【解析】

選擇①,利用正弦定理求得,利用余弦定理求得,再計(jì)算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計(jì)算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因?yàn)椋?,即;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高?選擇③,在中,由,得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.【點(diǎn)睛】本小題主要考查真閑的了、余弦定理解三角形,屬于中檔題.18、(1);(2)【解析】

(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達(dá)式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設(shè),得,從而,由余弦定理,得,即,又,所以,解得.【點(diǎn)睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎(chǔ)題.19、(1),(1,2);(2)存在,【解析】

(1)由直線恒過點(diǎn)點(diǎn)及拋物線C上的點(diǎn)到點(diǎn)Q的距離與到準(zhǔn)線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點(diǎn)的坐標(biāo);(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實(shí)數(shù)使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點(diǎn)Q的坐標(biāo)為拋物線的焦點(diǎn)坐標(biāo),由拋物線C上的點(diǎn)到點(diǎn)Q的距離與到其焦點(diǎn)F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因?yàn)橹本€與拋物線C相切,所以,解得,此時,所以點(diǎn)P坐標(biāo)為(1,2)(2)設(shè)存在滿足條件的實(shí)數(shù),點(diǎn),聯(lián)立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實(shí)數(shù)=滿足條件.【點(diǎn)睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用,解答此類題目,通常聯(lián)立直線方程與拋物線方程,應(yīng)用一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解,此類問題易錯點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯解,能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等.20、(1)當(dāng)時,無極值;當(dāng)時,極小值為;(2).【解析】

(1)求導(dǎo),對參數(shù)進(jìn)行分類討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時,,函數(shù)在上單調(diào)遞增,此時函數(shù)無極值;當(dāng)時,令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時函數(shù)有極小值,且極小值為.綜上:當(dāng)時,函數(shù)無極值;當(dāng)時,函數(shù)有極小值,極小值為.(2)令易得且,令所以,因?yàn)?,,從?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論