云南省馬關(guān)縣第二中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
云南省馬關(guān)縣第二中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
云南省馬關(guān)縣第二中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
云南省馬關(guān)縣第二中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
云南省馬關(guān)縣第二中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省馬關(guān)縣第二中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.正項(xiàng)等比數(shù)列的前項(xiàng)和為,若,,則公比()A.4 B.3 C.2 D.12.若是等差數(shù)列,則下列數(shù)列中也成等差數(shù)列的是()A. B. C. D.3.菱形ABCD,E是AB邊靠近A的一個三等分點(diǎn),DE=4,則菱形ABCD面積最大值為()A.36 B.18 C.12 D.94.設(shè),則比多了()項(xiàng)A. B. C. D.5.已知等差數(shù)列的前項(xiàng)和,若,則()A.25 B.39 C.45 D.546.已知函數(shù)的圖象如圖所示,則的解析式為()A. B.C. D.7.在正項(xiàng)等比數(shù)列中,,則()A. B. C. D.8.在ΔABC中,a,b,c分別為A,B,C的對邊,如果a,b,c成等差數(shù)列,B=30°,ΔABC的面積為32,那么b=A.1+32 B.1+3 C.9.某校高一年級有男生540人,女生360人,用分層抽樣的方法從高一年級的學(xué)生中隨機(jī)抽取25名學(xué)生進(jìn)行問卷調(diào)查,則應(yīng)抽取的女生人數(shù)為()A.5 B.10 C.15 D.2010.已知,是兩條不同的直線,,是兩個不同的平面,若,,則下列命題正確的是A.若,,則B.若,且,則C.若,,則D.若,且,則二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與,當(dāng)時,實(shí)數(shù)_______;當(dāng)時,實(shí)數(shù)_______.12.方程cosx=13.某學(xué)校成立了數(shù)學(xué),英語,音樂3個課外興趣小組,3個小組分別有39,32,33個成員,一些成員參加了不止一個小組,具體情況如圖.現(xiàn)隨機(jī)選取一個成員,他恰好只屬于2個小組的概率是____.14.給出以下四個結(jié)論:①過點(diǎn),在兩軸上的截距相等的直線方程是;②若是等差數(shù)列的前n項(xiàng)和,則;③在中,若,則是等腰三角形;④已知,,且,則的最大值是2.其中正確的結(jié)論是________(寫出所有正確結(jié)論的番號).15.在四面體A-BCD中,AB=AC=DB=DC=BC,且四面體A-BCD的最大體積為,則四面體A-BCD外接球的表面積為________.16.如圖所示,E,F(xiàn)分別是邊長為1的正方形的邊BC,CD的中點(diǎn),將其沿AE,AF,EF折起使得B,D,C三點(diǎn)重合.則所圍成的三棱錐的體積為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角、、的對邊分別為、、,且.(Ⅰ)求角;(Ⅱ)若,且邊上的中線的長為,求邊的值.18.已知,,,.(1)求的最小值(2)證明:.19.設(shè)函數(shù).(1)求函數(shù)的最小正周期.(2)求函數(shù)的單調(diào)遞減區(qū)間;(3)設(shè)為的三個內(nèi)角,若,,且為銳角,求.20.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函數(shù)f(x)=·的值域.21.已知等比數(shù)列中,,是和的等差中項(xiàng).(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

由及等比數(shù)列的通項(xiàng)公式列出關(guān)于q的方程即可得求解.【詳解】,即有,解得或,又為正項(xiàng)等比數(shù)列,故選:C【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和,屬于基礎(chǔ)題.2、C【解析】

根據(jù)等差數(shù)列的定義,只需任意相鄰的后一項(xiàng)與前一項(xiàng)的差為定值即可.【詳解】A:=(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],與n有關(guān)系,因此不是等差數(shù)列.B:==與n有關(guān)系,因此不是等差數(shù)列.C:3an+1﹣3an=3(an+1﹣an)=3d為常數(shù),仍然為等差數(shù)列;D:當(dāng)數(shù)列{an}的首項(xiàng)為正數(shù)、公差為負(fù)數(shù)時,{|an|}不是等差數(shù)列;故選:C【點(diǎn)睛】本題考查了等差數(shù)列的定義及其通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.3、B【解析】

設(shè)出菱形的邊長,在三角形ADE中,用余弦定理表示出cosA【詳解】設(shè)菱形的邊長為3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故選:B【點(diǎn)睛】本小題主要考查余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查菱形的面積公式,考查二次函數(shù)最值的求法,屬于中檔題.4、C【解析】

可知中共有項(xiàng),然后將中的項(xiàng)數(shù)減去中的項(xiàng)數(shù)即可得出答案.【詳解】,則中共有項(xiàng),所以,比多了的項(xiàng)數(shù)為.故選:C.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,解題的關(guān)鍵就是計(jì)算出等式中的項(xiàng)數(shù),考查分析問題和解決問題的能力,屬于中等題.5、A【解析】

設(shè)等差數(shù)列的公差為,從而根據(jù),即可求出,這樣根據(jù)等差數(shù)列的前項(xiàng)和公式即可求出.【詳解】解:設(shè)等差數(shù)列的公差為,則由,得:,,,故選:A.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式和等差數(shù)列的前項(xiàng)和公式,屬于基礎(chǔ)題.6、D【解析】

由函數(shù)圖象求出,由周期求出,由五點(diǎn)發(fā)作圖求出的值,即可求出函數(shù)的解析式.【詳解】解:根據(jù)函數(shù)的圖象,可得,,所以.再根據(jù)五點(diǎn)法作圖可得,所以,故.故選:D.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖像求解析式,屬于基礎(chǔ)題.7、D【解析】

結(jié)合對數(shù)的運(yùn)算,得到,即可求解.【詳解】由題意,在正項(xiàng)等比數(shù)列中,,則.故選:D.【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì),以及對數(shù)的運(yùn)算求值,其中解答中熟記等比數(shù)列的性質(zhì),合理應(yīng)用對數(shù)的運(yùn)算求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.8、B【解析】試題分析:由余弦定理得b2==14ac=32?ac=6,因?yàn)閍??,??考點(diǎn):余弦定理;三角形的面積公式.9、B【解析】

利用分層抽樣的定義和方法求解即可.【詳解】設(shè)應(yīng)抽取的女生人數(shù)為,則,解得.故選B【點(diǎn)睛】本題主要考查分層抽樣的定義及方法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.10、D【解析】

利用面面、線面位置關(guān)系的判定和性質(zhì),直接判定.【詳解】解:對于A,若n∥α,m∥β,則α∥β或α與β相交,故錯;對于B,若α∩β=l,且m⊥l,則m與β不一定垂直,故錯;對于C,若m∥n,m∥β,則α與β位置關(guān)系不定,故錯;對于D,∵α∩β=l,∴l(xiāng)?β,∵m∥l,則m∥β,故正確.故選D.【點(diǎn)睛】本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間相互關(guān)系的合理運(yùn)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)兩直線垂直和平行的充要條件,得到關(guān)于的方程,解方程即可得答案.【詳解】當(dāng)時,,解得:;當(dāng)時,且,解得:.故答案為:;.【點(diǎn)睛】本題考查兩直線垂直和平行的充要條件,考查邏輯推理能力和運(yùn)算求解能力,屬于基礎(chǔ)題.12、x|x=2kπ±【解析】

由誘導(dǎo)公式可得cosx=sinπ【詳解】因?yàn)榉匠蘡osx=sinπ所以x=2kπ±π故答案為x|x=2kπ±π【點(diǎn)睛】本題考查解三角函數(shù)的方程,余弦函數(shù)的周期性和誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.13、【解析】

由題中數(shù)據(jù),確定課外小組的總?cè)藬?shù),以及恰好屬于2個小組的人數(shù),人數(shù)比即為所求概率.【詳解】由題意可得,課外小組的總?cè)藬?shù)為,恰好屬于2個小組的人數(shù)為,所以隨機(jī)選取一個成員,他恰好只屬于2個小組的概率是.故答案為【點(diǎn)睛】本題主要考查古典概型,熟記列舉法求古典概型的概率即可,屬于??碱}型.14、②④【解析】

①中滿足題意的直線還有,②中根據(jù)等差數(shù)列前項(xiàng)和的特點(diǎn),得到,③中根據(jù)同角三角函數(shù)關(guān)系進(jìn)行化簡計(jì)算,從而進(jìn)行判斷,④中根據(jù)基本不等式進(jìn)行判斷.【詳解】①中過點(diǎn),在兩軸上的截距相等的直線還可以過原點(diǎn),即兩軸上的截距都為,即直線,所以錯誤;②中是等差數(shù)列的前n項(xiàng)和,根據(jù)等差數(shù)列前項(xiàng)和的特點(diǎn),,是一個不含常數(shù)項(xiàng)的二次式,從而得到,即,所以正確;③中在中,若,則可得,所以可得或,所以可得或,從而得到為直角三角形或等腰三角形,所以錯誤;④中因?yàn)?,,且,由基本不等式,得到,所以,?dāng)且僅當(dāng),即時,等號成立.所以,即的最大值是,所以正確.故答案為:②④【點(diǎn)睛】本題考查截距相等的直線的特點(diǎn),等差數(shù)列前項(xiàng)和的特點(diǎn),判斷三角形形狀,基本不等式求積的最大值,屬于中檔題.15、【解析】

當(dāng)面ABC面與BCD垂直時,四面體A-BCD的體積最大,根據(jù)最大體積為求出四面體的邊長,又△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心位于的中點(diǎn),從而得到半徑,即可求解.【詳解】如圖所示:當(dāng)面ABC面與BCD垂直時,四面體A-BCD的體積最大為,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心為的中點(diǎn),又,解得,,,所以四面體A-BCD外接球的半徑故四面體A-BCD外接球的表面積為.【點(diǎn)睛】本題考查多面體的外接圓及相關(guān)計(jì)算,多面體外接圓問題關(guān)鍵在圓心和半徑.16、【解析】

根據(jù)折疊后不變的垂直關(guān)系,結(jié)合線面垂直判定定理可得到為三棱錐的高,由此可根據(jù)三棱錐體積公式求得結(jié)果.【詳解】設(shè)點(diǎn)重合于點(diǎn),如下圖所示:,,又平面,平面,即為三棱錐的高故答案為:【點(diǎn)睛】本題考查立體幾何折疊問題中的三棱錐體積的求解問題,處理折疊問題的關(guān)鍵是能夠明確折疊后的不變量,即不變的垂直關(guān)系和長度關(guān)系.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)利用正弦定理和三角恒等變換的公式化簡即得;(Ⅱ)設(shè),則,,由余弦定理得關(guān)于x的方程,解方程即得解.【詳解】(Ⅰ)由題意,∴,∴,則,∵,∴,∴;(Ⅱ)由(Ⅰ)知,又∵,∴,設(shè),則,,在中,由余弦定理得:,即,解得,即.【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,考查三角恒等變換,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、(1)1(2)見解析【解析】

(1)根據(jù)基本不等式即可求出,(2)利用x2+y2+z2(x2+y2+z2+x2+y2+y2+z2+x2+z2),再根據(jù)基本不等式即可證明【詳解】(1)因?yàn)?,,所?即,當(dāng)且僅當(dāng)時等號成立,此時取得最小值1.(2).當(dāng)且僅當(dāng)時等號成立,【點(diǎn)睛】本題考查了基本不等式求最值和不等式的證明,屬于中檔題.19、(1)(2)減區(qū)間為,(3)【解析】

利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論.利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)遞減區(qū)間.利用同角三角函數(shù)的基本關(guān)系、兩角和的正弦公式,求得的值.【詳解】函數(shù),故它的最小正周期為.對于函數(shù),令,求得,可得它的減區(qū)間為,.中,若,.若,,為銳角,..【點(diǎn)睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,考查了同角三角函數(shù)的基本關(guān)系、兩角和的正弦公式的應(yīng)用,屬于中檔題.20、(1);(2)【解析】

(1)由向量共線得tanx=2,再由同角三角函數(shù)基本關(guān)系得sinxcosx=,即可求解;(2)整理f(x)=·=sin(2x+)+,由三角函數(shù)性質(zhì)即可求解最值【詳解】(1)∵∥,∴sinx=2cosx,tanx=2.∴sinxcosx===(2)f(x)=·=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+∵0<x≤,∴<2x+≤.∴sin(2x+)≤1∴1≤f(x)≤.所以f(x)的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論