天津濱海新區(qū)大港第八中學高三一診考試新高考數學試卷及答案解析_第1頁
天津濱海新區(qū)大港第八中學高三一診考試新高考數學試卷及答案解析_第2頁
天津濱海新區(qū)大港第八中學高三一診考試新高考數學試卷及答案解析_第3頁
天津濱海新區(qū)大港第八中學高三一診考試新高考數學試卷及答案解析_第4頁
天津濱海新區(qū)大港第八中學高三一診考試新高考數學試卷及答案解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天津濱海新區(qū)大港第八中學高三一診考試新高考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列的前項和為,且,,則()A. B. C. D.2.已知正項等比數列的前項和為,則的最小值為()A. B. C. D.3.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數字按照任意次序排成一行,拼成一個6位數,則產生的不同的6位數的個數為A.96 B.84 C.120 D.3604.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.5.函數的部分圖象大致是()A. B.C. D.6.已知命題:,,則為()A., B.,C., D.,7.復數(i是虛數單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.9.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.10.設集合,,若集合中有且僅有2個元素,則實數的取值范圍為A. B.C. D.11.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.12.已知向量,且,則m=()A.?8 B.?6C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.14.設滿足約束條件且的最小值為7,則=_________.15.已知直線被圓截得的弦長為2,則的值為__16.已知拋物線的對稱軸與準線的交點為,直線與交于,兩點,若,則實數__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經濟利益的角度來考慮,小張應選擇哪種還款方式.參考數據:.18.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)19.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.20.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.21.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.(1)設方案②中,某組個人的每個人的血化驗次數為,求的分布列;(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數;并指出在這三種分組情況下,相比方案①,化驗次數最多可以平均減少多少次?(最后結果四舍五入保留整數)22.(10分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據已知條件判斷出數列是等比數列,求得其通項公式,由此求得.【詳解】由于,所以數列是等比數列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數列的證明,考查等比數列通項公式,屬于基礎題.2、D【解析】

由,可求出等比數列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設等比數列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.【點睛】本題考查等比數列的通項公式的求法,考查等比數列的性質,考查學生的計算求解能力,屬于中檔題.3、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數共個,其中含有2個10的排列數共個,所以產生的不同的6位數的個數為.故選B.4、C【解析】

求得點坐標,由此求得直線的方程,聯立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設,則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎題.5、C【解析】

判斷函數的性質,和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數是奇函數,排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據函數解析式判斷函數圖象,屬于基礎題型,一般根據選項判斷函數的奇偶性,零點,特殊值的正負,以及單調性,極值點等排除選項.6、C【解析】

根據全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.7、B【解析】

利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.8、C【解析】

根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.9、C【解析】

直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數的求法,考查拋物線的性質,是中檔題,解題時要注意等價轉化思想的合理運用,屬于中檔題.10、B【解析】

由題意知且,結合數軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關系及運算,以及借助數軸解決有關問題,其中確定中的元素是解題的關鍵,屬于基礎題.11、B【解析】

建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.12、D【解析】

由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.14、3【解析】

根據約束條件畫出可行域,再把目標函數轉化為,對參數a分類討論,當時顯然不滿足題意;當時,直線經過可行域中的點A時,截距最小,即z有最小值,再由最小值為7,得出結果;當時,的截距沒有最小值,即z沒有最小值;當時,的截距沒有最大值,即z沒有最小值,綜上可得出結果.【詳解】根據約束條件畫出可行域如下:由,可得出交點,由可得,當時顯然不滿足題意;當即時,由可行域可知當直線經過可行域中的點A時,截距最小,即z有最小值,即,解得或(舍);當即時,由可行域可知的截距沒有最小值,即z沒有最小值;當即時,根據可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時.故答案為:3.【點睛】本題主要考查線性規(guī)劃問題,約束條件和目標函數中都有參數,要對參數進行討論.15、1【解析】

根據弦長為半徑的兩倍,得直線經過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,

因為直線被圓截得的弦長為2,

所以直線經過圓心(1,1),

,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質,屬基礎題.16、【解析】

由于直線過拋物線的焦點,因此過,分別作的準線的垂線,垂足分別為,,由拋物線的定義及平行線性質可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對稱性,問題應該有兩解.【詳解】直線過拋物線的焦點,,過,分別作的準線的垂線,垂足分別為,,由拋物線的定義知,.因為,所以.因為,所以,從而.設直線的傾斜角為,不妨設,如圖,則,,同理,則,解得,,由對稱性還有滿足題意.,綜上,.【點睛】本題考查拋物線的性質,考查拋物線的焦點弦問題,掌握拋物線的定義,把拋物線上點到焦點距離與它到距離聯系起來是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數列,即可由等差數列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據題意,采取等額本息的還款方式,每月還款額為一等比數列,設小張每月還款額為元,由等比數列求和公式及參考數據,即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數列,記為,表示數列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經濟利益的角度來考慮,小張應選擇等額本金還款方式.【點睛】本題考查了等差數列與等比數列求和公式的綜合應用,數列在實際問題中的應用,理解題意是解決問題的關鍵,屬于中檔題.18、(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系【解析】

(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據表格數據填寫列聯表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數為.完善列聯表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【點睛】本小題主要考查根據頻率分布直方圖計算小長方形的高,考查列聯表獨立性檢驗,屬于基礎題.19、(1)證明見解析;(2).【解析】

(1)構造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過點交于點,連接,如下圖所示:因為平面平面,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因為為中點,,故可得//,為中點;又因為四邊形為等腰梯形,是的中點,故可得//;又,且平面,平面,故面面,又因為平面,故面.即證.(2)連接,,作交于點,由(1)可知平面,又因為//,故可得平面,則;又因為//,,故可得即,,兩兩垂直,則分別以,,為,,軸建立空間直角坐標系,則,,,,,,設面的法向量為,則,,則,可取,設平面的法向量為,則,,則,可取,可知平面與平面所成的銳二面角的余弦值為.【點睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎題.20、(1)證明見詳解;(2)【解析】

(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結交于.因為//,故可得,即又旋轉不改變上述垂直關系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結,則即為與面所成角,連結交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論