版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海寶山同洲模范學(xué)校高三壓軸卷新高考數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a=()A.-1 B.1 C.0 D.22.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.93.設(shè)集合,,則().A. B.C. D.4.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.155.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.6.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準(zhǔn)線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.7.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.8.已知整數(shù)滿足,記點的坐標(biāo)為,則點滿足的概率為()A. B. C. D.9.函數(shù)在的圖象大致為()A. B.C. D.10.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.14011.設(shè)集合,,則集合A. B. C. D.12.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.己知函數(shù),若曲線在處的切線與直線平行,則__________.14.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點均在球的球面上,則球的表面積為_____.15.若關(guān)于的不等式在上恒成立,則的最大值為__________.16.在平面直角坐標(biāo)系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某學(xué)校為了解全校學(xué)生的體重情況,從全校學(xué)生中隨機抽取了100人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)(2)從全校學(xué)生中隨機抽取3名學(xué)生,記為體重在的人數(shù),求的分布列和數(shù)學(xué)期望;(3)由頻率分布直方圖可以認(rèn)為,該校學(xué)生的體重近似服從正態(tài)分布.若,則認(rèn)為該校學(xué)生的體重是正常的.試判斷該校學(xué)生的體重是否正常?并說明理由.18.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.19.(12分)已知函數(shù),.(Ⅰ)當(dāng)時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時,的最大值為,求證:.20.(12分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值.21.(12分)在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標(biāo)原點O為極點,x軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線C的極坐標(biāo)方程是.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.22.(10分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計算能力.2、A【解析】
由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因為,,由題可知:時,則,所以,所以,當(dāng)無限接近時,滿足條件,所以,所以要使得故當(dāng)時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運用構(gòu)造函數(shù)法和放縮法,同時考查轉(zhuǎn)化思想和解題能力.3、D【解析】
根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,4、C【解析】
寫出展開式的通項公式,令,即,則可求系數(shù).【詳解】的展開式的通項公式為,令,即時,系數(shù)為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎(chǔ)題.5、B【解析】
利用復(fù)數(shù)乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復(fù)數(shù)的乘法運算,考查復(fù)數(shù)模的計算,屬于基礎(chǔ)題.6、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進(jìn)而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運算的核心素養(yǎng)7、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關(guān)的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.8、D【解析】
列出所有圓內(nèi)的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內(nèi)的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學(xué)生的應(yīng)用能力.9、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點睛】本題考查函數(shù)圖象的判斷,屬于??碱}.10、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C11、B【解析】
先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.12、C【解析】
設(shè)為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結(jié)論.【詳解】設(shè)分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義,有求解.【詳解】因為函數(shù),所以,所以,解得.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,還考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.14、【解析】
做中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標(biāo)系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標(biāo)系的坐標(biāo)可求,通過球心滿足,即可求出的坐標(biāo),從而可求球的半徑,進(jìn)而能求出球的表面積.【詳解】解:如圖做中點,的中點,連接,由題意知,則設(shè)的外接圓圓心為,則在直線上且設(shè)長方形的外接圓圓心為,則在上且.設(shè)外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標(biāo)原點,以所在直線為軸,以過點垂直于軸的直線為軸,如圖建立坐標(biāo)系,由題意知,在平面中且設(shè),則,因為,所以解得.則所以球的表面積為.故答案為:.【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設(shè)半徑列方程求解;三是通過空間、平面坐標(biāo)系進(jìn)行求解.15、【解析】
分類討論,時不合題意;時求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡得,構(gòu)造放縮函數(shù)對自變量再研究,可解,【詳解】令;當(dāng)時,,不合題意;當(dāng)時,,令,得或,所以在區(qū)間和上單調(diào)遞減.因為,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當(dāng)時,,當(dāng)時,則.設(shè),則.當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.16、【解析】
利用即可建立關(guān)于的方程.【詳解】設(shè)雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關(guān)鍵是建立的方程或不等式,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)60;25(2)見解析,2.1(3)可以認(rèn)為該校學(xué)生的體重是正常的.見解析【解析】
(1)根據(jù)頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進(jìn)而可求出分布列以及數(shù)學(xué)期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學(xué)生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當(dāng)于3次獨立重復(fù)實驗,隨機交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數(shù)學(xué)期望(3)由題意知服從正態(tài)分布,則,所以可以認(rèn)為該校學(xué)生的體重是正常的.【點睛】本題考查了由頻率分布直方圖求進(jìn)行數(shù)據(jù)估計,考查了二項分布,考查了正態(tài)分布.注意,統(tǒng)計類問題,如果題目中沒有特殊說明,則求出數(shù)據(jù)的精度和題目中數(shù)據(jù)的小數(shù)后位數(shù)相同.18、(1)見解析(2)最小值為1.【解析】
(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時取等號,∴四邊形的面積的最小值為1.【點睛】本小題主要考查動點軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計算,考查運算求解能力,屬于中檔題.19、(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當(dāng)時,在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當(dāng)時,令,即,令,即(i)當(dāng),即時,在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時,由的單調(diào)性可得在上的最小值是(iii)當(dāng),即時,在上單調(diào)遞減,在上的最小值是(Ⅲ)當(dāng)時,令,則是單調(diào)遞減函數(shù).因為,,所以在上存在,使得,即討論可得在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數(shù),且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數(shù),所以(1)當(dāng)時,,所以在上單調(diào)遞增.所以函數(shù)在上的最小值是(2)當(dāng)時,令,即,所以令,即,所以(i)當(dāng),即時,在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時,在上單調(diào)遞減,在上單調(diào)遞增,所以在上的最小值是(iii)當(dāng),即時,在上單調(diào)遞減,所以在上的最小值是綜上所述,當(dāng)時,在上的最小值是當(dāng)時,在上的最小值是當(dāng)時,在上的最小值是(Ⅲ)因為函數(shù),所以所以當(dāng)時,令,所以是單調(diào)遞減函數(shù).因為,,所以在上存在,使得,即所以當(dāng)時,;當(dāng)時,即當(dāng)時,;當(dāng)時,所以在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時,取得最大值是因為,所以因為,所以所以20、(1)(2)【解析】
(1)當(dāng)時,,由可得,(所以,解得,所以不等式的解集為.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西省新干縣第二中學(xué)等四校2025屆物理高一第一學(xué)期期末預(yù)測試題含解析
- 廣東省深圳市樂而思中心2025屆物理高二上期末質(zhì)量檢測模擬試題含解析
- 2025屆北京市西城區(qū)回民學(xué)校高二物理第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 2025屆內(nèi)蒙古平煤高級中學(xué)、元寶山一中物理高二第一學(xué)期期中檢測試題含解析
- 2025屆安徽省宿州市十三所重點中學(xué)物理高一第一學(xué)期期末監(jiān)測模擬試題含解析
- 廢品回收預(yù)付款合同
- 黑龍江雙鴨山市(2024年-2025年小學(xué)五年級語文)人教版質(zhì)量測試(下學(xué)期)試卷及答案
- 江蘇省南京市(2024年-2025年小學(xué)五年級語文)統(tǒng)編版開學(xué)考試((上下)學(xué)期)試卷及答案
- 【8語期中】合肥市包河區(qū)大聯(lián)考2024-2025學(xué)年八年級上學(xué)期11月期中語文試題
- 患教4胰島素劑量調(diào)整護(hù)理課件
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫含答案
- 2024年燕舞集團(tuán)限公司公開招聘公開引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 四年級上冊語文 第六單元《一只窩囊的大老虎》教學(xué)課件 第1課時
- 互聯(lián)網(wǎng)+遠(yuǎn)程問診
- 自然資源調(diào)查監(jiān)測技能競賽理論考試題庫大全-上(單選題)
- 2024年倉儲與配送管理形成性考核答案大揭秘
- 中醫(yī)養(yǎng)生學(xué)復(fù)習(xí)題
- 旅行社行業(yè)發(fā)展前景與機遇展望報告
- 2023-2024學(xué)年第一學(xué)期上海市奉賢區(qū)九年級八校聯(lián)考語文期中試卷
- 項目組織管理機構(gòu)及人員配備(完整版)
- 機械設(shè)備:低空經(jīng)濟(jì)系列報告(一):他山之石-Joby的前世今生
評論
0/150
提交評論