人教版七年級(jí)數(shù)學(xué)上冊(cè)專題07線段中的動(dòng)態(tài)模型(原卷版+解析)_第1頁
人教版七年級(jí)數(shù)學(xué)上冊(cè)專題07線段中的動(dòng)態(tài)模型(原卷版+解析)_第2頁
人教版七年級(jí)數(shù)學(xué)上冊(cè)專題07線段中的動(dòng)態(tài)模型(原卷版+解析)_第3頁
人教版七年級(jí)數(shù)學(xué)上冊(cè)專題07線段中的動(dòng)態(tài)模型(原卷版+解析)_第4頁
人教版七年級(jí)數(shù)學(xué)上冊(cè)專題07線段中的動(dòng)態(tài)模型(原卷版+解析)_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題07線段中的動(dòng)態(tài)模型線段中的動(dòng)態(tài)模型一直都是一大難點(diǎn)和??键c(diǎn),它經(jīng)常以壓軸題的形式出現(xiàn)??疾闃邮揭彩呛茇S富,和平時(shí)所學(xué)的內(nèi)容結(jié)合在一起考。本專題就線段中的動(dòng)態(tài)模型進(jìn)行梳理及對(duì)應(yīng)試題分析,方便掌握?!局R(shí)儲(chǔ)備】1、在與線段長度有關(guān)的問題中,常會(huì)涉及線段較多且關(guān)系較復(fù)雜的問題,而且題中的數(shù)據(jù)無法直接利用,常設(shè)未知數(shù)列方程。2、線段的動(dòng)態(tài)模型解題步驟:1)設(shè)入未知量t表示動(dòng)點(diǎn)運(yùn)動(dòng)的距離;2)利用和差(倍分)關(guān)系表示所需的線段;3)根據(jù)題設(shè)條件建立方程求解;4)觀察運(yùn)動(dòng)位置可能的情況去計(jì)算其他結(jié)果。模型1、線段中點(diǎn)、和差倍分關(guān)系中的動(dòng)態(tài)模型例1.(2022·貴州銅仁·七年級(jí)期末)如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).(1)求線段MN的長度.(2)根據(jù)第(1)題的計(jì)算過程和結(jié)果,設(shè)AC=a,BC=b,其他條件不變,求MN的長度.(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P以2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q以1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).當(dāng)C、P、Q三點(diǎn)中,有一點(diǎn)恰好是以另外兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)時(shí),直接寫出時(shí)間t.例2.(2022·陜西岐山縣·七年級(jí)期中)如圖,點(diǎn),在數(shù)軸上所對(duì)應(yīng)的數(shù)分別為-5,7(單位長度為),是,間一點(diǎn),,兩點(diǎn)分別從點(diǎn),出發(fā),以,的速度沿直線向左運(yùn)動(dòng)(點(diǎn)在線段上,點(diǎn)在線段上),運(yùn)動(dòng)的時(shí)間為.(1)______.(2)若點(diǎn),運(yùn)動(dòng)到任一時(shí)刻時(shí),總有,請(qǐng)求出的長.(3)在(2)的條件下,是數(shù)軸上一點(diǎn),且,求的長.例3.(2022·重慶七年級(jí)期中)如果一點(diǎn)在由兩條公共端點(diǎn)的線段組成的一條折線上且把這條折線分成長度相等的兩部分,這點(diǎn)叫做這條折線的“折中點(diǎn)”.如圖,點(diǎn)D是折線A﹣C﹣B的“折中點(diǎn)”,請(qǐng)解答以下問題:(1)當(dāng)AC>BC時(shí),點(diǎn)D在線段上;當(dāng)AC=BC時(shí),點(diǎn)D與重合;當(dāng)AC<BC時(shí),點(diǎn)D在線段上;(2)若AC=18cm,BC=10cm,若∠ACB=90°,有一動(dòng)點(diǎn)P從C點(diǎn)出發(fā),在線段CB上向點(diǎn)B運(yùn)動(dòng),速度為2cm/s,設(shè)運(yùn)動(dòng)時(shí)間是t(s),求當(dāng)t為何值,三角形PCD的面積為10?(3)若E為線段AC中點(diǎn),EC=8cm,CD=6cm,求CB的長度.模型2、線段上動(dòng)點(diǎn)問題中的存在性(探究性)模型例1.(2022·湖北武漢·七年級(jí)期末)已知線段AB=m,CD=n,線段CD在直線AB上運(yùn)動(dòng)(A在B的左側(cè),C在D的左側(cè)),且m,n滿足|m-12|+(n-4)2=0.(1)m=,n=;(2)點(diǎn)D與點(diǎn)B重合時(shí),線段CD以2個(gè)單位長度/秒的速度向左運(yùn)動(dòng).①如圖1,點(diǎn)C在線段AB上,若M是線段AC的中點(diǎn),N是線段BD的中點(diǎn),求線段MN的長;②P是直線AB上A點(diǎn)左側(cè)一點(diǎn),線段CD運(yùn)動(dòng)的同時(shí),點(diǎn)F從點(diǎn)P出發(fā)以3個(gè)單位/秒的向右運(yùn)動(dòng),點(diǎn)E是線段BC的中點(diǎn),若點(diǎn)F與點(diǎn)C相遇1秒后與點(diǎn)E相遇.試探索整個(gè)運(yùn)動(dòng)過程中,F(xiàn)C-5DE是否為定值,若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.例2.(2022·廣西桂林·七年級(jí)期末)如圖,在直線AB上,線段,動(dòng)點(diǎn)P從A出發(fā),以每秒2個(gè)單位長度的速度在直線AB上運(yùn)動(dòng).M為AP的中點(diǎn),N為BP的中點(diǎn),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.(1)若點(diǎn)P在線段AB上的運(yùn)動(dòng),當(dāng)時(shí),;(2)若點(diǎn)P在射線AB上的運(yùn)動(dòng),當(dāng)時(shí),求點(diǎn)P的運(yùn)動(dòng)時(shí)間t的值;(3)當(dāng)點(diǎn)P在線段AB的反向延長線上運(yùn)動(dòng)時(shí),線段AB、PM、PN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論,并說明你的理由.模型3、閱讀理解型(新定義)模型例1.(2023·江蘇七年級(jí)課時(shí)練習(xí))(理解新知)如圖①,點(diǎn)M在線段AB上,圖中共有三條線段AB、AM和BM,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點(diǎn)M是線段AB的“奇妙點(diǎn)”,(1)線段的中點(diǎn)這條線段的“奇妙點(diǎn)”(填“是”或“不是”)(2)(初步應(yīng)用)如圖②,若,點(diǎn)N是線段CD的“奇妙點(diǎn)”,則;(3)(解決問題)如圖③,已知,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以速度沿AB向點(diǎn)B勻速移動(dòng),點(diǎn)從點(diǎn)B出發(fā),以的速度沿BA向點(diǎn)A勻速移動(dòng),點(diǎn)P、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止.設(shè)移動(dòng)的時(shí)間為t,請(qǐng)求出為何值時(shí),A、P、三點(diǎn)中其中一點(diǎn)恰好是另外兩點(diǎn)為端點(diǎn)的線段的“奇妙點(diǎn)”.例2.(2023秋·湖南岳陽·七年級(jí)統(tǒng)考期末)材料閱讀:當(dāng)點(diǎn)C在線段上,且時(shí),我們稱n為點(diǎn)C在線段上的點(diǎn)值,記作.如點(diǎn)C是的中點(diǎn)時(shí),則,記作;反過來,當(dāng)時(shí),則有.因此,我們可以這樣理解:與具有相同的含義.初步感知:(1)如圖1,點(diǎn)C在線段上,若,則_______;若,則_______;(2)如圖2,已知線段,點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),相向而行,運(yùn)動(dòng)速度均為,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.請(qǐng)用含有t的式子表示和,并判斷它們的數(shù)量關(guān)系.拓展運(yùn)用:(3)已知線段,點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),相向而行,若點(diǎn)P、Q的運(yùn)動(dòng)速度分別為和,點(diǎn)Q到達(dá)點(diǎn)A后立即以原速返回,點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts.則當(dāng)t為何值時(shí),等式成立.課后專項(xiàng)訓(xùn)練1.(2022秋·四川巴中·七年級(jí)統(tǒng)考期末)如圖:數(shù)軸上點(diǎn)、、表示的數(shù)分別是,,1,且點(diǎn)為線段的中點(diǎn),點(diǎn)為原點(diǎn),點(diǎn)在數(shù)軸上,點(diǎn)為線段的中點(diǎn).、為數(shù)軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)從點(diǎn)向左運(yùn)動(dòng),速度為每秒1個(gè)單位長度,點(diǎn)從點(diǎn)向左運(yùn)動(dòng),速度為每秒3個(gè)單位長度,、同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為.有下列結(jié)論:①若點(diǎn)表示的數(shù)是3,則;②若,則;③當(dāng)時(shí),;④當(dāng)時(shí),點(diǎn)是線段的中點(diǎn);其中正確的有.(填序號(hào))2.(2023秋·福建福州·七年級(jí)??计谀┮阎欣頂?shù)a,b滿足:.如圖,在數(shù)軸上,點(diǎn)O是原點(diǎn),點(diǎn)A所對(duì)應(yīng)的數(shù)是a,線段在直線上運(yùn)動(dòng)(點(diǎn)B在點(diǎn)C的左側(cè)),.下列結(jié)論:①;②當(dāng)點(diǎn)B與點(diǎn)O重合時(shí),;③當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),若點(diǎn)P是線段BC延長線上的點(diǎn),則;④在線段運(yùn)動(dòng)過程中,若M為線段的中點(diǎn),N為線段的中點(diǎn),則線段的長度不變.所有結(jié)論正確的序號(hào)是.3.(2022·廣東江門·七年級(jí)期末)如圖,已知長方形ABCD的長米,寬米,x,y滿足,一動(dòng)點(diǎn)P從A出發(fā)以每秒1米的速度沿著運(yùn)動(dòng),另一動(dòng)點(diǎn)Q從B出發(fā)以每秒2米的速度沿運(yùn)動(dòng),P,Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t.(1)______________,______________.(2)當(dāng)時(shí),求的面積;(3)當(dāng)P,Q都在DC上,且PQ距離為1時(shí),求t的值4.(2023春·河南新鄉(xiāng)·七年級(jí)??茧A段練習(xí))如圖,在數(shù)軸上有A、B兩點(diǎn),點(diǎn)O是數(shù)軸原點(diǎn),點(diǎn)C是線段的中點(diǎn),.(1)求點(diǎn)C所表示的數(shù);(2)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),沿著數(shù)軸的正方向運(yùn)動(dòng),點(diǎn)P、Q的運(yùn)動(dòng)速度分別是每秒3個(gè)單位長度和每秒2個(gè)單位長度(當(dāng)P與Q相遇,運(yùn)動(dòng)停止),點(diǎn)M是線段的中點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.①請(qǐng)用含t的式子表示的長;②當(dāng)時(shí),求動(dòng)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)字.(參考:在數(shù)軸上,點(diǎn)A對(duì)應(yīng)的有理數(shù)為a,點(diǎn)B對(duì)應(yīng)的有理數(shù)為b,則以A、B為端點(diǎn)線段的中點(diǎn)對(duì)應(yīng)的數(shù)為)

5.(2023·湖北武漢·七年級(jí)校考階段練習(xí))如圖,數(shù)軸上A、B兩點(diǎn)表示的有理數(shù)分別為a、b,,與互為相反數(shù),線段在數(shù)軸上從A點(diǎn)左側(cè)沿?cái)?shù)軸正方向勻速運(yùn)動(dòng)(點(diǎn)C在點(diǎn)D的左側(cè)),點(diǎn)M、N分別為、的中點(diǎn).

(1)的長為;若,則的長為;(2)在(1)條件下,當(dāng)時(shí),求N點(diǎn)所表示的有理數(shù);(3)設(shè),線段運(yùn)動(dòng)的速度為v,則在運(yùn)動(dòng)過程中,線段完全通過線段的時(shí)間為.(用含m、v的式子表示)6.(2023秋·廣東·七年級(jí)課堂例題)如圖,數(shù)軸的原點(diǎn)為,是數(shù)軸上的三點(diǎn),點(diǎn)B表示的數(shù)為1,,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是2個(gè)單位長度/秒,點(diǎn)Q的速度是1個(gè)單位長度/秒.設(shè)運(yùn)動(dòng)時(shí)間為秒.

(1)分別求點(diǎn)表示的數(shù);(2)分別求點(diǎn)表示的數(shù)(用含t的式子表示);(3)當(dāng)t為何值時(shí),?7.(2022秋·陜西西安·七年級(jí)??计谥校┮阎獢?shù)軸上、兩點(diǎn)對(duì)應(yīng)數(shù)分別為和4,為數(shù)軸上一點(diǎn),對(duì)應(yīng)的數(shù)為.(1)若為線段的三等分點(diǎn),求點(diǎn)對(duì)應(yīng)的數(shù);(2)數(shù)軸上是否存在點(diǎn),使點(diǎn)到,兩點(diǎn)的距離和為10?若存在,求出的值;若不存在,請(qǐng)說明理由.(3)若點(diǎn),和點(diǎn)(在原點(diǎn)),同時(shí)向左運(yùn)動(dòng),它們的速度分別是1、2、1個(gè)長度單位/分,則第幾分鐘時(shí),為的中點(diǎn)?并求出此時(shí)點(diǎn)所對(duì)應(yīng)的數(shù).8.(2023秋·廣東·七年級(jí)課堂例題)如圖,是線段上任意一點(diǎn),兩點(diǎn)分別從點(diǎn)同時(shí)出發(fā),沿線段向點(diǎn)運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為,點(diǎn)的運(yùn)動(dòng)速度為.設(shè)運(yùn)動(dòng)的時(shí)間為.(1)若,①運(yùn)動(dòng)后,求的長;②當(dāng)在線段上運(yùn)動(dòng)時(shí),試說明.(2)如果,試探索的長.

9.(2023秋·黑龍江大慶·七年級(jí)統(tǒng)考開學(xué)考試)如圖,P是線段上一點(diǎn),,C、D兩點(diǎn)分別從P、B出發(fā)以的速度沿直線向左運(yùn)動(dòng)(C在線段上,D在線段上),運(yùn)動(dòng)的時(shí)間為.

(1)當(dāng)時(shí),,請(qǐng)求出的長;(2)若C、D運(yùn)動(dòng)到任一時(shí)刻時(shí),總有,請(qǐng)求出的長;(3)在(2)的條件下,Q是直線上一點(diǎn),且,求的長.10.(2022秋·云南昆明·七年級(jí)??计谀┤鐖D,點(diǎn)是數(shù)軸的原點(diǎn),數(shù)軸正半軸上有一點(diǎn),已知,

(1)在原點(diǎn)的左側(cè)畫點(diǎn),使(尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)點(diǎn),點(diǎn)同時(shí)從原點(diǎn)出發(fā),點(diǎn)以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),到達(dá)點(diǎn)后立即返回向右運(yùn)動(dòng),點(diǎn)以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動(dòng).當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng).若時(shí),求的值;(3)在以上的條件下,若點(diǎn)到達(dá)點(diǎn)后繼續(xù)沿?cái)?shù)軸向右運(yùn)動(dòng),點(diǎn)的運(yùn)動(dòng)速度和方向保持不變.在整個(gè)運(yùn)動(dòng)過程中,若點(diǎn),點(diǎn),點(diǎn),點(diǎn)到原點(diǎn)的距離之和是15,求的值.11.(2023秋·吉林·七年級(jí)??计谀┤鐖D,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為16,點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.(1),兩點(diǎn)間的距離等于________,線段的中點(diǎn)表示的數(shù)為________;(2)用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為________,點(diǎn)表示的數(shù)為________;(3)求當(dāng)為何值時(shí),?(4)若點(diǎn)為的中點(diǎn),當(dāng)點(diǎn)到原點(diǎn)距離為時(shí),________.12.(2022春·黑龍江哈爾濱·七年級(jí)統(tǒng)考期末)如圖,在數(shù)軸上,點(diǎn)為原點(diǎn),點(diǎn)在原點(diǎn)左側(cè),點(diǎn)在原點(diǎn)右側(cè),點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,.

(1).(2)動(dòng)點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)、的運(yùn)動(dòng)速度分別是2個(gè)單位秒和3個(gè)單位秒,當(dāng)點(diǎn)與點(diǎn)重合時(shí),運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)為何值時(shí),;(3)在(2)的條件下,點(diǎn)為線段的中點(diǎn),點(diǎn)為的中點(diǎn).當(dāng)時(shí),求出相應(yīng)值,并直接寫出線段的長.13.(2023秋·河南焦作·七年級(jí)統(tǒng)考期末)如圖,點(diǎn)是數(shù)軸的原點(diǎn),點(diǎn)、點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)是6,且,(1)求線段的長;(2)點(diǎn)以每秒1個(gè)單位的速度在數(shù)軸上勻速運(yùn)動(dòng),點(diǎn)以每秒2個(gè)單位的速度在數(shù)軸上勻速運(yùn)動(dòng).設(shè)點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為秒,若點(diǎn)能夠重合,求出這時(shí)的運(yùn)動(dòng)時(shí)間;(3)在(2)的條件下,當(dāng)點(diǎn)和點(diǎn)都向同一個(gè)方向運(yùn)動(dòng)時(shí),直接寫出經(jīng)過多少秒后,點(diǎn)兩點(diǎn)間的距離為20個(gè)單位.14.(2023春·黑龍江哈爾濱·七年級(jí)校聯(lián)考期末)如圖所示,點(diǎn)表示數(shù)軸的原點(diǎn),點(diǎn)在原點(diǎn)的左側(cè),所表示的數(shù)是,點(diǎn)在原點(diǎn)的右側(cè),所表示的數(shù)是,并且關(guān)于的多項(xiàng)式是三次二項(xiàng)式.

(1)求線段的長;(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段運(yùn)動(dòng),到達(dá)點(diǎn)停止,速度是個(gè)單位長度/秒,點(diǎn)A為線段的中點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)用含有的式子表示線段的長;(3)在(2)的條件下,是否存在值,使線段的長度是?并說明理由.15.(2023·綿陽市·七年級(jí)專題練習(xí))如圖,P是線段上一點(diǎn),,C,D兩動(dòng)點(diǎn)分別從點(diǎn)P,B同時(shí)出發(fā)沿射線向左運(yùn)動(dòng),到達(dá)點(diǎn)A處即停止運(yùn)動(dòng).

(1)若點(diǎn)C,D的速度分別是,.①當(dāng)動(dòng)點(diǎn)C,D運(yùn)動(dòng)了2s,且點(diǎn)D仍在線段上時(shí),_________cm;②若點(diǎn)C到達(dá)中點(diǎn)時(shí),點(diǎn)D也剛好到達(dá)的中點(diǎn),則_________;(2)若動(dòng)點(diǎn)C,D的速度分別是,,點(diǎn)C,D在運(yùn)動(dòng)時(shí),總有,求的長16.(2023春·廣東梅州·七年級(jí)??奸_學(xué)考試)如圖,是線段上一點(diǎn),,,兩點(diǎn)分別從,出發(fā)以,的速度同時(shí)沿直線向左運(yùn)動(dòng)(在線段上,在線段上),運(yùn)動(dòng)的時(shí)間為.(1)若,運(yùn)動(dòng)時(shí),且,請(qǐng)求出的長.(2)若,運(yùn)動(dòng)到任一時(shí)刻時(shí),總有,的長度是否變化?若不變,請(qǐng)求出的長,若變化,請(qǐng)說明理由.(3)在()的條件下,是直線上一點(diǎn),且,求的長.17.(2023秋·遼寧撫順·七年級(jí)統(tǒng)考期末)如圖,是線段上一點(diǎn),,,兩動(dòng)點(diǎn)分別從點(diǎn),同時(shí)出發(fā)沿射線向左運(yùn)動(dòng),到達(dá)點(diǎn)A處即停止運(yùn)動(dòng).(1)若點(diǎn),的速度分別是,.①若,當(dāng)動(dòng)點(diǎn),運(yùn)動(dòng)了時(shí),求的值;②若點(diǎn)到達(dá)中點(diǎn)時(shí),點(diǎn)也剛好到達(dá)的中點(diǎn),求;(2)若動(dòng)點(diǎn),的速度分別是,,點(diǎn),在運(yùn)動(dòng)時(shí),總有,求的長度.18.(2023春·吉林長春·七年級(jí)統(tǒng)考開學(xué)考試)如圖,點(diǎn)在線段上,,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每秒個(gè)單位長度的速度向終點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每秒個(gè)單位長度的速度向終點(diǎn)勻速運(yùn)動(dòng).當(dāng)點(diǎn)到達(dá)終點(diǎn)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.(1)線段的長為______.(2)當(dāng)點(diǎn)與點(diǎn)相遇時(shí),求的值.(3)當(dāng)點(diǎn)與點(diǎn)之間的距離為個(gè)單位長度時(shí),求的值.(4)當(dāng)時(shí),直接寫出的值.19.(2022秋·黑龍江哈爾濱·七年級(jí)??茧A段練習(xí))如圖,數(shù)軸上有A、兩點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)是,點(diǎn)在點(diǎn)A的右側(cè),和點(diǎn)A相距6個(gè)單位長度.(1)求出點(diǎn)所對(duì)應(yīng)的有理數(shù);(2)若點(diǎn)到點(diǎn)A、的距離之和是10個(gè)單位長度,求出點(diǎn)所對(duì)應(yīng)的有理數(shù);(3)在(2)的條件下,如果點(diǎn)從點(diǎn)出發(fā),沿?cái)?shù)軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),同時(shí)點(diǎn)以每秒4個(gè)單位長度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),求經(jīng)過幾秒后、兩點(diǎn)相距6個(gè)單位長度.20.(2022秋·黑龍江哈爾濱·七年級(jí)統(tǒng)考期末)已知和是同類項(xiàng),且a、b分別是點(diǎn)A、B在數(shù)軸上對(duì)應(yīng)的數(shù).(1)求線段的長度;(2)若點(diǎn)P、Q分別同時(shí)從點(diǎn)A、B出發(fā),沿?cái)?shù)軸向數(shù)軸負(fù)方向運(yùn)動(dòng).點(diǎn)P的速度為1個(gè)單位/秒,點(diǎn)Q的速度為6個(gè)單位/秒,求t秒后線段的長(用含t的代數(shù)式表示).(3)在(2)的條件下,已知點(diǎn)M把線段分成的兩條線段的比為2:3,且,當(dāng)時(shí),求線段的長.

專題07線段中的動(dòng)態(tài)模型線段中的動(dòng)態(tài)模型一直都是一大難點(diǎn)和??键c(diǎn),它經(jīng)常以壓軸題的形式出現(xiàn)??疾闃邮揭彩呛茇S富,和平時(shí)所學(xué)的內(nèi)容結(jié)合在一起考。本專題就線段中的動(dòng)態(tài)模型進(jìn)行梳理及對(duì)應(yīng)試題分析,方便掌握?!局R(shí)儲(chǔ)備】1、在與線段長度有關(guān)的問題中,常會(huì)涉及線段較多且關(guān)系較復(fù)雜的問題,而且題中的數(shù)據(jù)無法直接利用,常設(shè)未知數(shù)列方程。2、線段的動(dòng)態(tài)模型解題步驟:1)設(shè)入未知量t表示動(dòng)點(diǎn)運(yùn)動(dòng)的距離;2)利用和差(倍分)關(guān)系表示所需的線段;3)根據(jù)題設(shè)條件建立方程求解;4)觀察運(yùn)動(dòng)位置可能的情況去計(jì)算其他結(jié)果。模型1、線段中點(diǎn)、和差倍分關(guān)系中的動(dòng)態(tài)模型例1.(2022·貴州銅仁·七年級(jí)期末)如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).(1)求線段MN的長度.(2)根據(jù)第(1)題的計(jì)算過程和結(jié)果,設(shè)AC=a,BC=b,其他條件不變,求MN的長度.(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P以2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q以1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).當(dāng)C、P、Q三點(diǎn)中,有一點(diǎn)恰好是以另外兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)時(shí),直接寫出時(shí)間t.【答案】(1)MN=8厘米;(2)MN=a+b;(3)所求時(shí)間t為4或或.【分析】(1)(2)根據(jù)線段中點(diǎn)的定義、線段的和差,可得答案;(3)當(dāng)C、P、Q三點(diǎn)中,有一點(diǎn)恰好是以另外兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)時(shí),可分四種情況進(jìn)行討論:①當(dāng)0<t≤5時(shí),C是線段PQ的中點(diǎn);②當(dāng)5<t≤時(shí),P為線段CQ的中點(diǎn);③當(dāng)<t≤6時(shí),Q為線段PC的中點(diǎn);④當(dāng)6<t≤8時(shí),C為線段PQ的中點(diǎn).根據(jù)線段中點(diǎn)的定義,可得方程,進(jìn)而求解.【詳解】解:(1)∵線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn),∴MC=AC=5厘米,CN=BC=3厘米,∴MN=MC+CN=8厘米;(2)∵AC=a,BC=b,點(diǎn)M,N分別是AC,BC的中點(diǎn),∴MC=AC=a,CN=BC=b,∴MN=MC+CN=a+b;(3)①當(dāng)點(diǎn)P在線段AC上,即0<t≤5時(shí),C是線段PQ的中點(diǎn),得10-2t=6-t,解得t=4;②當(dāng)點(diǎn)P在線段BC上,即5<t≤時(shí),P為線段CQ的中點(diǎn),2t-10=16-3t,解得t=;③當(dāng)點(diǎn)Q在線段BC上,即<t≤6時(shí),Q為線段PC的中點(diǎn),6-t=3t-16,解得t=;④當(dāng)點(diǎn)Q在線段AC上,即6<t≤8時(shí),C為線段PQ的中點(diǎn),2t-10=t-6,解得t=4(舍),綜上所述:所求時(shí)間t為4或或.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用,兩點(diǎn)間的距離,利用線段中點(diǎn)的定義得出關(guān)于t的方程是解題關(guān)鍵,要分類討論,以防遺漏.例2.(2022·陜西岐山縣·七年級(jí)期中)如圖,點(diǎn),在數(shù)軸上所對(duì)應(yīng)的數(shù)分別為-5,7(單位長度為),是,間一點(diǎn),,兩點(diǎn)分別從點(diǎn),出發(fā),以,的速度沿直線向左運(yùn)動(dòng)(點(diǎn)在線段上,點(diǎn)在線段上),運(yùn)動(dòng)的時(shí)間為.(1)______.(2)若點(diǎn),運(yùn)動(dòng)到任一時(shí)刻時(shí),總有,請(qǐng)求出的長.(3)在(2)的條件下,是數(shù)軸上一點(diǎn),且,求的長.【答案】(1)12;(2)4cm;(3)或【分析】(1)由兩點(diǎn)間的距離,即可求解;(2)由線段的和差關(guān)系可求解;(3)由題設(shè)畫出圖示,分兩種情況根據(jù):當(dāng)點(diǎn)在線段上時(shí),由AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,從而求得PQ與AB的關(guān)系,當(dāng)點(diǎn)在的延長線上時(shí),可得.【詳解】解:(1)∵A、B兩點(diǎn)對(duì)應(yīng)的數(shù)分別為-5,7,∴線段AB的長度為:7-(-5)=12;故答案為:12(2)根據(jù)點(diǎn),的運(yùn)動(dòng)速度知.因?yàn)?,所以,即,所以.?)分兩種情況:如圖,當(dāng)點(diǎn)在線段上時(shí),因?yàn)椋裕忠驗(yàn)?,所以,所以;如圖,當(dāng)點(diǎn)在的延長線上時(shí),,綜上所述,的長為或.【點(diǎn)睛】本題考查了數(shù)軸的運(yùn)用和絕對(duì)值的運(yùn)用,解題的關(guān)鍵是掌握數(shù)軸上兩點(diǎn)之間距離的表示方法,靈活運(yùn)用線段的和、差、倍、分轉(zhuǎn)化線段之間的數(shù)量關(guān)系是十分關(guān)鍵的一點(diǎn).例3.(2022·重慶七年級(jí)期中)如果一點(diǎn)在由兩條公共端點(diǎn)的線段組成的一條折線上且把這條折線分成長度相等的兩部分,這點(diǎn)叫做這條折線的“折中點(diǎn)”.如圖,點(diǎn)D是折線A﹣C﹣B的“折中點(diǎn)”,請(qǐng)解答以下問題:(1)當(dāng)AC>BC時(shí),點(diǎn)D在線段上;當(dāng)AC=BC時(shí),點(diǎn)D與重合;當(dāng)AC<BC時(shí),點(diǎn)D在線段上;(2)若AC=18cm,BC=10cm,若∠ACB=90°,有一動(dòng)點(diǎn)P從C點(diǎn)出發(fā),在線段CB上向點(diǎn)B運(yùn)動(dòng),速度為2cm/s,設(shè)運(yùn)動(dòng)時(shí)間是t(s),求當(dāng)t為何值,三角形PCD的面積為10?(3)若E為線段AC中點(diǎn),EC=8cm,CD=6cm,求CB的長度.【答案】(1)AC,C,BC;(2)s;(3)CB的長度是4

cm

或28cm.分析:(1)根據(jù)圖形及閱讀材料所給的信息直接填空即可;(2)如圖4,先表示PC=2t,由折中點(diǎn)的定義得AD=14,根據(jù)三角形的面積公式列式可求t的值;(3)分當(dāng)點(diǎn)D在線段AC上與BC上兩種情況求解即可.【解析】(1)當(dāng)AC>BC時(shí),如圖1,點(diǎn)D在線段AC上;當(dāng)AC=BC時(shí),如圖2,點(diǎn)D與C重合;當(dāng)AC<BC時(shí),如圖3,點(diǎn)D在線段BC上;因此,本題正確答案是:AC,C,BC.(2)如圖4,根據(jù)題意得:PC=2t,∵AC=18,BC=10cm,∴AC+BC=18+10=28cm,∵D點(diǎn)是折中點(diǎn),∴AD=14cm,∴CD=18-14=4cm,∵∠ACB=90°,∴,即,解得,則當(dāng)t為秒時(shí),三角形PCD的面積為10cm2;(3)分兩種情況:①點(diǎn)D在線段AC上時(shí),如圖5,∵E為線段AC中點(diǎn),EC=8cm,∴AC=2CE=16cm,∵CD=6cm,∴AD=AC-CD=16-6=10cm,∵D為折中點(diǎn),∴AD=CD+BC,∴BC=AD-CD=10-6=4cm;②點(diǎn)D在線段BC上,如圖6,∵E為線段AC中點(diǎn),EC=8cm,∴AC=2CE=16cm,∴AD=AC+CD=16+6=22cm,∴BD=AC+CD=22cm,∴BC=BD+CD=22+6=28cm.綜上所述,CB的長度是4cm或28cm.模型2、線段上動(dòng)點(diǎn)問題中的存在性(探究性)模型例1.(2022·湖北武漢·七年級(jí)期末)已知線段AB=m,CD=n,線段CD在直線AB上運(yùn)動(dòng)(A在B的左側(cè),C在D的左側(cè)),且m,n滿足|m-12|+(n-4)2=0.(1)m=,n=;(2)點(diǎn)D與點(diǎn)B重合時(shí),線段CD以2個(gè)單位長度/秒的速度向左運(yùn)動(dòng).①如圖1,點(diǎn)C在線段AB上,若M是線段AC的中點(diǎn),N是線段BD的中點(diǎn),求線段MN的長;②P是直線AB上A點(diǎn)左側(cè)一點(diǎn),線段CD運(yùn)動(dòng)的同時(shí),點(diǎn)F從點(diǎn)P出發(fā)以3個(gè)單位/秒的向右運(yùn)動(dòng),點(diǎn)E是線段BC的中點(diǎn),若點(diǎn)F與點(diǎn)C相遇1秒后與點(diǎn)E相遇.試探索整個(gè)運(yùn)動(dòng)過程中,F(xiàn)C-5DE是否為定值,若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.【答案】(1)m=12,n=4;(2)①M(fèi)N=8,②在整個(gè)運(yùn)動(dòng)的過程中,F(xiàn)C-5DE的值為定值,且定值為0.【分析】(1)由絕對(duì)值和平方的非負(fù)性,即可求出m、n的值;(2)①由題意,則MN=CM+CD+DN,根據(jù)線段中點(diǎn)的定義,即可得到答案;②設(shè)PA=a,則PC=8+a,PE=10+a,然后列出方程,求出a=2,然后分情況進(jìn)行分析,求出每一種的值,即可得到答案.【詳解】解:(1)∵|m-12|+(n-4)2=0,∴m-12=0,n-4=0,∴m=12,n=4;故答案為:12;4.(2)由題意,①∵AB=12,CD=4,∵M(jìn)是線段AC的中點(diǎn),N是線段BD的中點(diǎn)∴AM=CM=AC,DN=BN=BD∴MN=CM+CD+DN=AC+CD+BD=AC+CD+BD+CD=(AC+CD+BD)+CD=(AB+CD)=8;②如圖,設(shè)PA=a,則PC=8+a,PE=10+a,依題意有:解得:a=2在整個(gè)運(yùn)動(dòng)的過程中:BD=2t,BC=4+2t,∵E是線段BC的中點(diǎn)∴CE=BE=BC=2+t;Ⅰ.如圖1,F(xiàn),C相遇,即t=2時(shí)F,C重合,D,E重合,則FC=0,DE=0∴FC-5DE=0;Ⅱ.如圖2,F(xiàn),C相遇前,即t<2時(shí)FC=10-5t,DE=BE-BD=2+t-2t=2-t∴FC-5DE=10-5t-5(2-t)=0;Ⅲ.如圖3,F(xiàn),C相遇后,即t>2時(shí)FC=5t-10,DE=BD-BE=2t–(2+t)=t-2∴FC-5DE=5t-10-5(t-2)=0;綜合上述:在整個(gè)運(yùn)動(dòng)的過程中,F(xiàn)C5DE的值為定值,且定值為0.【點(diǎn)睛】本題考查了線段中點(diǎn)的定義,線段的和差倍分的關(guān)系,一元一次方程的應(yīng)用,絕對(duì)值的非負(fù)性等知識(shí),解題的關(guān)鍵是熟練掌握線段的中點(diǎn)定義進(jìn)行解題,注意運(yùn)用分類討論的思想進(jìn)行分析.例2.(2022·廣西桂林·七年級(jí)期末)如圖,在直線AB上,線段,動(dòng)點(diǎn)P從A出發(fā),以每秒2個(gè)單位長度的速度在直線AB上運(yùn)動(dòng).M為AP的中點(diǎn),N為BP的中點(diǎn),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.(1)若點(diǎn)P在線段AB上的運(yùn)動(dòng),當(dāng)時(shí),;(2)若點(diǎn)P在射線AB上的運(yùn)動(dòng),當(dāng)時(shí),求點(diǎn)P的運(yùn)動(dòng)時(shí)間t的值;(3)當(dāng)點(diǎn)P在線段AB的反向延長線上運(yùn)動(dòng)時(shí),線段AB、PM、PN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論,并說明你的理由.【答案】(1)(2)8或24(3),見解析【分析】(1)根據(jù)題中條件直接計(jì)算即可求解;(2)分點(diǎn)在線段上運(yùn)動(dòng)和線段的延長線上運(yùn)動(dòng)進(jìn)行討論,從而求解;(3)先將和表示出來,再求出線段、、之間的數(shù)量關(guān)系.(1)解:∵M(jìn)為AP的中點(diǎn),,∴,∵線段,N為BP的中點(diǎn),∴.故答案是:2;(2)解:①當(dāng)點(diǎn)P在線段AB上,時(shí),如圖,∵,,∴,解得:.②當(dāng)點(diǎn)P在線段AB的延長線上,時(shí),如圖,∵,,∴,解得:.綜上所述,當(dāng)時(shí),點(diǎn)P的運(yùn)動(dòng)時(shí)間t的值為8或24.(3)解:當(dāng)點(diǎn)P在線段AB的反向延長線上時(shí),,∵,,∴.【點(diǎn)睛】本題主要考查了點(diǎn)的運(yùn)動(dòng)和線段之間的關(guān)系,熟練掌握幾何的基礎(chǔ)知識(shí)是解答本題的關(guān)鍵.模型3、閱讀理解型(新定義)模型例1.(2023·江蘇七年級(jí)課時(shí)練習(xí))(理解新知)如圖①,點(diǎn)M在線段AB上,圖中共有三條線段AB、AM和BM,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點(diǎn)M是線段AB的“奇妙點(diǎn)”,(1)線段的中點(diǎn)這條線段的“奇妙點(diǎn)”(填“是”或“不是”)(2)(初步應(yīng)用)如圖②,若,點(diǎn)N是線段CD的“奇妙點(diǎn)”,則;(3)(解決問題)如圖③,已知,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以速度沿AB向點(diǎn)B勻速移動(dòng),點(diǎn)從點(diǎn)B出發(fā),以的速度沿BA向點(diǎn)A勻速移動(dòng),點(diǎn)P、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止.設(shè)移動(dòng)的時(shí)間為t,請(qǐng)求出為何值時(shí),A、P、三點(diǎn)中其中一點(diǎn)恰好是另外兩點(diǎn)為端點(diǎn)的線段的“奇妙點(diǎn)”.【答案】(1)是;(2)8或12或16;(3)當(dāng)點(diǎn)P為AQ的“奇妙點(diǎn)”時(shí),或4或;當(dāng)點(diǎn)Q為AP的“奇妙點(diǎn)”時(shí),或6或.【分析】(1)根據(jù)線段的中點(diǎn)平分線段長的性質(zhì),以及題目中所給的“奇妙點(diǎn)”的定義,進(jìn)行判斷即可.(2)由“奇妙點(diǎn)”定義,此題分為三種情況,情況1:,即N為CD的中點(diǎn);情況2:,即N為靠近C點(diǎn)的三等分點(diǎn);情況3:,即N為靠近D點(diǎn)的三等分點(diǎn),根據(jù)以上三種情況,分別求出CN的長度.(3)由題意可知,A不可能是“奇妙點(diǎn)”,故此題分兩大類情況,情況1:當(dāng)P、Q未相遇之前,P是“奇妙點(diǎn)”時(shí),根據(jù)第(2)題的思路,又可以分為3種情況,根據(jù)每種情況,利用線段長度關(guān)系列方程,分別求出對(duì)應(yīng)時(shí)間;情況2:當(dāng)P、Q相遇之后,Q是“奇妙點(diǎn)”時(shí),同樣根據(jù)第(2)題的思路,又分成3種情況討論,利用線段長度關(guān)系列方程,求出每種情況對(duì)應(yīng)的時(shí)間.【詳解】(1)由線段中點(diǎn)的性質(zhì)可知:被中點(diǎn)平分的兩條線段長度是線段總長的一半,根據(jù)“奇妙點(diǎn)”定義可知:線段的中點(diǎn)是“奇妙點(diǎn)”.故答案是:是;(2)是線段CD的“奇妙點(diǎn)”根據(jù)定義,此題共分為三種情況.當(dāng),即N為CD的中點(diǎn)時(shí),有CN=12cm.當(dāng),即N為靠近C點(diǎn)的三等分點(diǎn)時(shí),有CN=8cm.當(dāng),即N為靠近D點(diǎn)的三等分點(diǎn)時(shí),有CN=16cm.故答案為:8或12或16.(3)解:由題意可知,A點(diǎn)不可能是“奇妙點(diǎn)”,故P或Q點(diǎn)是“奇妙點(diǎn)”.t秒后,,.當(dāng)P點(diǎn)是“奇妙點(diǎn)”時(shí),.由“奇妙點(diǎn)”定義可分三種情況.當(dāng)時(shí),有解得當(dāng)時(shí),有解得當(dāng)時(shí),有解得當(dāng)Q點(diǎn)是“奇妙點(diǎn)”時(shí),.當(dāng)時(shí),有解得當(dāng)時(shí),有解得當(dāng)時(shí),有解得綜上所述:當(dāng)點(diǎn)P為AQ的“奇妙點(diǎn)”時(shí),或4或;當(dāng)點(diǎn)Q為AP的“奇妙點(diǎn)”時(shí),或6或.【點(diǎn)睛】本題屬于新定義題,主要是考察了線段中點(diǎn)、線段長度、列方程等知識(shí)點(diǎn),本題討論情況較多,從側(cè)面考察了數(shù)學(xué)中比較重要的分類討論思想,根據(jù)題意,能夠正確地進(jìn)行分類討論,把每一種情況列舉完全,是解決該題的關(guān)鍵.例2.(2023秋·湖南岳陽·七年級(jí)統(tǒng)考期末)材料閱讀:當(dāng)點(diǎn)C在線段上,且時(shí),我們稱n為點(diǎn)C在線段上的點(diǎn)值,記作.如點(diǎn)C是的中點(diǎn)時(shí),則,記作;反過來,當(dāng)時(shí),則有.因此,我們可以這樣理解:與具有相同的含義.初步感知:(1)如圖1,點(diǎn)C在線段上,若,則_______;若,則_______;(2)如圖2,已知線段,點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),相向而行,運(yùn)動(dòng)速度均為,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.請(qǐng)用含有t的式子表示和,并判斷它們的數(shù)量關(guān)系.拓展運(yùn)用:(3)已知線段,點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),相向而行,若點(diǎn)P、Q的運(yùn)動(dòng)速度分別為和,點(diǎn)Q到達(dá)點(diǎn)A后立即以原速返回,點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts.則當(dāng)t為何值時(shí),等式成立.【答案】(1),(2);;(3)存在t為4或,使等式成立【分析】(1)根據(jù)材料閱讀,即可求解;(2)根據(jù)材料閱讀,可表示和,即可求解;(3)分兩種情況:當(dāng)點(diǎn)Q到達(dá)點(diǎn)A之前時(shí),當(dāng)點(diǎn)Q到達(dá)點(diǎn)A返回時(shí),結(jié)合,列出方程,即可求解.【詳解】(1)解:根據(jù)題意得:,∵,∴,故答案為:,(2)解:∵,∴,∵∴,∴,∴;(3)解:當(dāng)點(diǎn)Q到達(dá)點(diǎn)A之前時(shí),∵∴,∵∴,∴,∵,∴,

解得:;當(dāng)點(diǎn)Q到達(dá)點(diǎn)A返回時(shí),此時(shí),∴∵,∴,∵∴

∴存在t的值為4或,使等式成立.【點(diǎn)睛】本題主要考查了一元一次方程的應(yīng)用,理解新定義是解題的關(guān)鍵.課后專項(xiàng)訓(xùn)練1.(2022秋·四川巴中·七年級(jí)統(tǒng)考期末)如圖:數(shù)軸上點(diǎn)、、表示的數(shù)分別是,,1,且點(diǎn)為線段的中點(diǎn),點(diǎn)為原點(diǎn),點(diǎn)在數(shù)軸上,點(diǎn)為線段的中點(diǎn).、為數(shù)軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)從點(diǎn)向左運(yùn)動(dòng),速度為每秒1個(gè)單位長度,點(diǎn)從點(diǎn)向左運(yùn)動(dòng),速度為每秒3個(gè)單位長度,、同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為.有下列結(jié)論:①若點(diǎn)表示的數(shù)是3,則;②若,則;③當(dāng)時(shí),;④當(dāng)時(shí),點(diǎn)是線段的中點(diǎn);其中正確的有.(填序號(hào))【答案】①③/③①【分析】①根據(jù)線段的中點(diǎn)的定義以及點(diǎn)、可確定點(diǎn)、表示的數(shù),進(jìn)而得到的長度;②由,分兩種情況討論:點(diǎn)在點(diǎn)的右側(cè)時(shí)以及點(diǎn)在點(diǎn)的左側(cè)時(shí),可得到點(diǎn)表示的數(shù),由點(diǎn)為線段的中點(diǎn)可得點(diǎn)表示的數(shù),進(jìn)而得到的長度;③當(dāng)時(shí),可得到、的長,從而確定點(diǎn)、,即可得到的長;④當(dāng)時(shí),可得到、的長,從而確定點(diǎn)、,進(jìn)而判斷.【詳解】①若點(diǎn)表示的數(shù)是3,∵點(diǎn)為線段的中點(diǎn),表示的數(shù)是1,∴,,即表示的數(shù)是2,∴,故①正確;②若,當(dāng)點(diǎn)在點(diǎn)的右側(cè)時(shí),則點(diǎn)表示的數(shù)是4,∵點(diǎn)為線段的中點(diǎn),∴,即表示的數(shù)是,∴,當(dāng)點(diǎn)在點(diǎn)的左側(cè)時(shí),則點(diǎn)表示的數(shù)是,∵點(diǎn)為線段的中點(diǎn),∴,即表示的數(shù)是,∴,綜上,,故②不正確;③當(dāng)時(shí),,,∵、表示的數(shù)分別是,1,∴、表示的數(shù)分別是,,∴,故③正確;④當(dāng)時(shí),,,∴、表示的數(shù)分別是,,∵點(diǎn)在、的左側(cè),不可能是線段的中點(diǎn)故④不正確;故答案為:①③【點(diǎn)睛】本題考查了數(shù)軸以及兩點(diǎn)間的距離、線段的中點(diǎn),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題.2.(2023秋·福建福州·七年級(jí)??计谀┮阎欣頂?shù)a,b滿足:.如圖,在數(shù)軸上,點(diǎn)O是原點(diǎn),點(diǎn)A所對(duì)應(yīng)的數(shù)是a,線段在直線上運(yùn)動(dòng)(點(diǎn)B在點(diǎn)C的左側(cè)),.下列結(jié)論:①;②當(dāng)點(diǎn)B與點(diǎn)O重合時(shí),;③當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),若點(diǎn)P是線段BC延長線上的點(diǎn),則;④在線段運(yùn)動(dòng)過程中,若M為線段的中點(diǎn),N為線段的中點(diǎn),則線段的長度不變.所有結(jié)論正確的序號(hào)是.【答案】①③④【分析】①根據(jù)非負(fù)數(shù)的性質(zhì)可得a和b的值,可判斷;②如圖1,根據(jù)數(shù)軸可直觀得出;③如圖2,分別計(jì)算,的值可判斷;④分四種情況,根據(jù)圖形分別計(jì)算的長即可可判斷.【詳解】解:①∵,∵,∴,∴;故①正確;②如圖1,當(dāng)點(diǎn)B與點(diǎn)O重合時(shí),;故②不正確;③如圖2,當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),若點(diǎn)P是線段延長線上的點(diǎn),∴,∴;故③正確;④∵M(jìn)為線段的中點(diǎn),N為線段的中點(diǎn),∴分四種情況:1)當(dāng)C在O的左側(cè)時(shí),如圖3,;2)當(dāng)B,C在O的兩側(cè)時(shí),如圖4,;3)當(dāng)B,C在線段上時(shí),如圖5,;4)當(dāng)B和C都在A的右邊時(shí),如圖6,;∴在線段運(yùn)動(dòng)過程中,若M為線段的中點(diǎn),N為線段的中點(diǎn),線段的長度不變.故④正確;故答案為:①③④.【點(diǎn)睛】本題考查了絕對(duì)值和平方的非負(fù)性,數(shù)軸和線段的中點(diǎn),線段的和差,熟練掌握線段中點(diǎn)的定義是解題的關(guān)鍵.3.(2022·廣東江門·七年級(jí)期末)如圖,已知長方形ABCD的長米,寬米,x,y滿足,一動(dòng)點(diǎn)P從A出發(fā)以每秒1米的速度沿著運(yùn)動(dòng),另一動(dòng)點(diǎn)Q從B出發(fā)以每秒2米的速度沿運(yùn)動(dòng),P,Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t.(1)______________,______________.(2)當(dāng)時(shí),求的面積;(3)當(dāng)P,Q都在DC上,且PQ距離為1時(shí),求t的值【答案】(1)5,4(2)平方米(3)【分析】(1)根據(jù)絕對(duì)值和乘方的非負(fù)性,即可求解;(2)根據(jù)題意得:當(dāng)t=4.5時(shí),點(diǎn)P在CD上,DP=0.5米,點(diǎn)Q剛好到達(dá)點(diǎn)D處,可得米,再由,即可求解;(3)當(dāng)P,Q都在DC上,可得,然后分兩種情況討論:當(dāng)P左Q右時(shí),當(dāng)Q左P右時(shí),即可求解.(1)解∶∵,∴,∴x=5,y=4,故答案為:5,4;(2)解:當(dāng)t=4.5時(shí),P走過的路程為4.5米,此時(shí)點(diǎn)P在CD上,DP=0.5米,Q走過的路程為9米,剛好到達(dá)點(diǎn)D處,∴米,∴平方米;(3)解:點(diǎn)P在DC上,,點(diǎn)Q在DC上,,∴,當(dāng)P左Q右時(shí),,,∴,∴,解得:當(dāng)Q左P右時(shí),,,∴,∴,解得,不符題意,舍去.綜上,滿足題意的.【點(diǎn)睛】本題主要考查了動(dòng)點(diǎn)問題,涉及絕對(duì)值和平方式的非負(fù)性,三角形面積的求解,解題的關(guān)鍵是關(guān)鍵題意用時(shí)間t表示出線段長度,列式求出t的值.4.(2023春·河南新鄉(xiāng)·七年級(jí)校考階段練習(xí))如圖,在數(shù)軸上有A、B兩點(diǎn),點(diǎn)O是數(shù)軸原點(diǎn),點(diǎn)C是線段的中點(diǎn),.(1)求點(diǎn)C所表示的數(shù);(2)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),沿著數(shù)軸的正方向運(yùn)動(dòng),點(diǎn)P、Q的運(yùn)動(dòng)速度分別是每秒3個(gè)單位長度和每秒2個(gè)單位長度(當(dāng)P與Q相遇,運(yùn)動(dòng)停止),點(diǎn)M是線段的中點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.①請(qǐng)用含t的式子表示的長;②當(dāng)時(shí),求動(dòng)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)字.(參考:在數(shù)軸上,點(diǎn)A對(duì)應(yīng)的有理數(shù)為a,點(diǎn)B對(duì)應(yīng)的有理數(shù)為b,則以A、B為端點(diǎn)線段的中點(diǎn)對(duì)應(yīng)的數(shù)為)

【答案】(1)(2)①;②或【分析】(1)根據(jù)線段中點(diǎn)的定義結(jié)合線段之間的關(guān)系求出的長即可得到答案;(2)①先求出點(diǎn)A和點(diǎn)B表示的數(shù),進(jìn)而求出運(yùn)動(dòng)t秒后點(diǎn)P和點(diǎn)Q表示的數(shù),進(jìn)一步求出點(diǎn)M表示的數(shù),最后根據(jù)數(shù)軸上兩點(diǎn)距離公式求出的長即可;②先表示出,結(jié)合(2)①所求以及已知條件建立方程求解即可.【詳解】(1)解:∵,點(diǎn)C是線段的中點(diǎn),∴,∵,∴,又∵點(diǎn)C在原點(diǎn)O的左邊,∴點(diǎn)C表示的數(shù)為;(2)解:①由(1)可知,,∴點(diǎn)A和點(diǎn)B表示的數(shù)分別為和2,∵動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),沿著數(shù)軸的正方向運(yùn)動(dòng),點(diǎn)P、Q的運(yùn)動(dòng)速度分別是每秒3個(gè)單位長度和每秒2個(gè)單位長度,∴運(yùn)動(dòng)t秒后點(diǎn)P和點(diǎn)Q表示的數(shù)分別為和,∵點(diǎn)M是線段的中點(diǎn),∴運(yùn)動(dòng)t秒后點(diǎn)M表示的數(shù)為,∴;②由①得,∵,∴,∴或,解得或,∴的值為或∴點(diǎn)P表示的數(shù)為或.【點(diǎn)睛】本題主要考查了與線段中點(diǎn)有關(guān)的計(jì)算,數(shù)軸上兩點(diǎn)的距離公式,一元一次方程的應(yīng)用,正確理解題意并熟練掌握數(shù)軸上兩點(diǎn)距離公式是解題的關(guān)鍵.5.(2023·湖北武漢·七年級(jí)??茧A段練習(xí))如圖,數(shù)軸上A、B兩點(diǎn)表示的有理數(shù)分別為a、b,,與互為相反數(shù),線段在數(shù)軸上從A點(diǎn)左側(cè)沿?cái)?shù)軸正方向勻速運(yùn)動(dòng)(點(diǎn)C在點(diǎn)D的左側(cè)),點(diǎn)M、N分別為、的中點(diǎn).

(1)的長為;若,則的長為;(2)在(1)條件下,當(dāng)時(shí),求N點(diǎn)所表示的有理數(shù);(3)設(shè),線段運(yùn)動(dòng)的速度為v,則在運(yùn)動(dòng)過程中,線段完全通過線段的時(shí)間為.(用含m、v的式子表示)【答案】(1)10,6(2)(3)【分析】(1)由題意可直接得到,兩點(diǎn)表示的有理數(shù)分別為和4,設(shè),則,,由點(diǎn)、分別為、的中點(diǎn),可得出,,所以;(2)根據(jù)(1)中的結(jié)論,可直接求得;(3)思路和過程同(1)中過程,可直接求出走的路程,根據(jù)速度可求出運(yùn)動(dòng)時(shí)間.【詳解】(1)解:與互為相反數(shù),,又,,,,,兩點(diǎn)表示的有理數(shù)分別為和4,;如題圖1,設(shè),則,,點(diǎn)、分別為、的中點(diǎn),,,;(2)解:如題圖2,

當(dāng)時(shí),,,,又點(diǎn)表示的有理數(shù)為,點(diǎn)表示的有理數(shù)為;(3)設(shè),則,,點(diǎn)、分別為、的中點(diǎn),,,;在運(yùn)動(dòng)過程中,線段完全通過線段的時(shí)間為:.【點(diǎn)睛】本題主要考查數(shù)軸上點(diǎn)的運(yùn)動(dòng),涉及線段的和差運(yùn)算,線段中點(diǎn)的定義等內(nèi)容,根據(jù)圖形得出線段之間的和差關(guān)系是解題關(guān)鍵.6.(2023秋·廣東·七年級(jí)課堂例題)如圖,數(shù)軸的原點(diǎn)為,是數(shù)軸上的三點(diǎn),點(diǎn)B表示的數(shù)為1,,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是2個(gè)單位長度/秒,點(diǎn)Q的速度是1個(gè)單位長度/秒.設(shè)運(yùn)動(dòng)時(shí)間為秒.

(1)分別求點(diǎn)表示的數(shù);(2)分別求點(diǎn)表示的數(shù)(用含t的式子表示);(3)當(dāng)t為何值時(shí),?【答案】(1)點(diǎn)A表示的數(shù)是,點(diǎn)C表示的數(shù)是3(2)點(diǎn)P表示的數(shù)是,點(diǎn)Q表示的數(shù)是(3)當(dāng)t的值為或8時(shí),【分析】(1)根據(jù)點(diǎn)B對(duì)應(yīng)的數(shù)、線段、的長及點(diǎn)A、C與點(diǎn)B的位置關(guān)系,可得出點(diǎn)A、C對(duì)應(yīng)的數(shù);(2)根據(jù)點(diǎn)P、Q的出發(fā)點(diǎn)、運(yùn)動(dòng)方向、運(yùn)動(dòng)速度及運(yùn)動(dòng)時(shí)間,即可用含t的代數(shù)式表示出運(yùn)動(dòng)時(shí)間為t秒時(shí)點(diǎn)P、Q對(duì)應(yīng)的數(shù);(3)根據(jù),可得出關(guān)于t的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論.【詳解】(1)解:∵點(diǎn)B表示的數(shù)為1,,且點(diǎn)A在點(diǎn)B的左側(cè),∴點(diǎn)A對(duì)應(yīng)的數(shù)是,∵點(diǎn)B表示的數(shù)為1,,且點(diǎn)C在點(diǎn)B的右側(cè),∴點(diǎn)C對(duì)應(yīng)的數(shù)是,∴點(diǎn)A對(duì)應(yīng)的數(shù)是,點(diǎn)C對(duì)應(yīng)的數(shù)是3;(2)解:∵動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是2個(gè)單位長度/秒,點(diǎn)Q的速度是1個(gè)單位長度/秒,當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),點(diǎn)P對(duì)應(yīng)的數(shù)是,點(diǎn)Q對(duì)應(yīng)的數(shù)是;(3)解:根據(jù)題意得,,即或,解得或,答:當(dāng)或時(shí),.【點(diǎn)睛】本題考查一元一次方程的應(yīng)用、數(shù)軸及列代數(shù)式,解題的關(guān)鍵是掌握兩點(diǎn)間的距離公式,理解題意,找準(zhǔn)數(shù)量關(guān)系列方程.7.(2022秋·陜西西安·七年級(jí)??计谥校┮阎獢?shù)軸上、兩點(diǎn)對(duì)應(yīng)數(shù)分別為和4,為數(shù)軸上一點(diǎn),對(duì)應(yīng)的數(shù)為.(1)若為線段的三等分點(diǎn),求點(diǎn)對(duì)應(yīng)的數(shù);(2)數(shù)軸上是否存在點(diǎn),使點(diǎn)到,兩點(diǎn)的距離和為10?若存在,求出的值;若不存在,請(qǐng)說明理由.(3)若點(diǎn),和點(diǎn)(在原點(diǎn)),同時(shí)向左運(yùn)動(dòng),它們的速度分別是1、2、1個(gè)長度單位/分,則第幾分鐘時(shí),為的中點(diǎn)?并求出此時(shí)點(diǎn)所對(duì)應(yīng)的數(shù).【答案】(1)點(diǎn)P對(duì)應(yīng)的數(shù)為0或2(2)存在,或(3)第2分鐘時(shí),為的中點(diǎn),此時(shí)點(diǎn)所對(duì)應(yīng)的數(shù)為【分析】(1)根據(jù)三等分點(diǎn)的定義可得或,列出方程求解即可;(2)根據(jù)題意進(jìn)行分類討論:①當(dāng)點(diǎn)P在點(diǎn)A左邊時(shí),②當(dāng)點(diǎn)P在線段上時(shí),③當(dāng)點(diǎn)P在點(diǎn)B右邊時(shí);(3)設(shè)第t分鐘為的中點(diǎn),則第t分鐘,點(diǎn)A對(duì)應(yīng)的數(shù)為,點(diǎn)B對(duì)應(yīng)的數(shù)為:,點(diǎn)P對(duì)應(yīng)的數(shù)為,根據(jù)為的中點(diǎn),列出方程求解即可.【詳解】(1)解:∵、兩點(diǎn)對(duì)應(yīng)數(shù)分別為和4,∴,∵為線段的三等分點(diǎn),∴或,且點(diǎn)P在線段上,∵點(diǎn)P表示的為數(shù)x,∴,,當(dāng)時(shí),,解得:,當(dāng)時(shí),,解得:,綜上:點(diǎn)P對(duì)應(yīng)的數(shù)為0或2.(2)解:①當(dāng)點(diǎn)P在點(diǎn)A左邊時(shí):,,∴,解得:;②當(dāng)點(diǎn)P在線段上時(shí):,,∴,不符合題意;③當(dāng)點(diǎn)P在點(diǎn)B右邊時(shí):,∴,解得:,綜上:存在,或.(3)解:設(shè)第t分鐘為的中點(diǎn),第t分鐘,點(diǎn)A對(duì)應(yīng)的數(shù)為:,第t分鐘,點(diǎn)B對(duì)應(yīng)的數(shù)為:,第t分鐘,點(diǎn)P對(duì)應(yīng)的數(shù)為:,∵為的中點(diǎn),∴,解得:,此時(shí)點(diǎn)所對(duì)應(yīng)的數(shù).綜上:第2分鐘時(shí),為的中點(diǎn),此時(shí)點(diǎn)所對(duì)應(yīng)的數(shù)為.【點(diǎn)睛】本題主要考查了用數(shù)軸上的點(diǎn)表示數(shù),數(shù)軸上兩點(diǎn)之間的距離,解題的關(guān)鍵是掌握數(shù)軸上兩點(diǎn)之間距離的求法.8.(2023秋·廣東·七年級(jí)課堂例題)如圖,是線段上任意一點(diǎn),兩點(diǎn)分別從點(diǎn)同時(shí)出發(fā),沿線段向點(diǎn)運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為,點(diǎn)的運(yùn)動(dòng)速度為.設(shè)運(yùn)動(dòng)的時(shí)間為.

(1)若,①運(yùn)動(dòng)后,求的長;②當(dāng)在線段上運(yùn)動(dòng)時(shí),試說明.(2)如果,試探索的長.【答案】(1)①;②見解析(2)的長為或.【分析】(1)①先求出與的長度,然后利用即可求出答案;②用t表示出的長度即可證得;(2)當(dāng)時(shí),求出的長度,由于沒有說明D點(diǎn)在C點(diǎn)的左邊還是右邊,故需要分情況討論.【詳解】(1)解:①由題意可知,,因?yàn)?,所以,所以;②因?yàn)?,所以,,所以,所以,所以;?)解:當(dāng)時(shí),,,當(dāng)點(diǎn)在點(diǎn)的右邊時(shí),如圖①所示:

因?yàn)?,所以,所以,所以;?dāng)點(diǎn)在點(diǎn)的左邊時(shí),如圖②所示:

因?yàn)椋?,所以,綜上所述,的長為或.【點(diǎn)睛】本題考查兩點(diǎn)間的距離,涉及列代數(shù)式,分類討論的思想,屬于中等題型.9.(2023秋·黑龍江大慶·七年級(jí)統(tǒng)考開學(xué)考試)如圖,P是線段上一點(diǎn),,C、D兩點(diǎn)分別從P、B出發(fā)以的速度沿直線向左運(yùn)動(dòng)(C在線段上,D在線段上),運(yùn)動(dòng)的時(shí)間為.

(1)當(dāng)時(shí),,請(qǐng)求出的長;(2)若C、D運(yùn)動(dòng)到任一時(shí)刻時(shí),總有,請(qǐng)求出的長;(3)在(2)的條件下,Q是直線上一點(diǎn),且,求的長.【答案】(1)(2)(3)的長為或【分析】(1)根據(jù)運(yùn)動(dòng)時(shí)間可得,因?yàn)椋傻?,即可求解;?)和第(1)問一樣的思路求解即可;(3)兩種情況分別進(jìn)行討論,點(diǎn)Q在線段上,可證,即可求解;點(diǎn)Q不在線段上,則點(diǎn)Q在線段的延長線上,和前一種情況一樣的思路.【詳解】(1)解:∵點(diǎn)C從P出發(fā)以的速度運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為∴.∵點(diǎn)D從B出發(fā)以的速度運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為,∴.故.∵,∴,即.故.∵,∴.(2)解:∵點(diǎn)C從P出發(fā)以的速度運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為,∴.∵點(diǎn)D從B出發(fā)以)的速度運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為,∴.故.∵,,∴,即.故.∵,∴.(3)解:本題需要對(duì)以下兩種情況分別進(jìn)行討論.

(i)點(diǎn)Q在線段上(如圖①).∵,∴.∵,∴.∵,∴.故.∵,∴.(ii)點(diǎn)Q不在線段上,則點(diǎn)Q在線段的延長線上(如圖②).∵,∴.∵,∴.∵,∴.故.∵,∴.綜上所述,的長為或;【點(diǎn)睛】本題考查數(shù)軸上的動(dòng)點(diǎn)問題,理清線段之間的關(guān)系是關(guān)鍵,第(3)問有兩種情況需要考慮清楚.10.(2022秋·云南昆明·七年級(jí)??计谀┤鐖D,點(diǎn)是數(shù)軸的原點(diǎn),數(shù)軸正半軸上有一點(diǎn),已知,

(1)在原點(diǎn)的左側(cè)畫點(diǎn),使(尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)點(diǎn),點(diǎn)同時(shí)從原點(diǎn)出發(fā),點(diǎn)以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),到達(dá)點(diǎn)后立即返回向右運(yùn)動(dòng),點(diǎn)以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動(dòng).當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng).若時(shí),求的值;(3)在以上的條件下,若點(diǎn)到達(dá)點(diǎn)后繼續(xù)沿?cái)?shù)軸向右運(yùn)動(dòng),點(diǎn)的運(yùn)動(dòng)速度和方向保持不變.在整個(gè)運(yùn)動(dòng)過程中,若點(diǎn),點(diǎn),點(diǎn),點(diǎn)到原點(diǎn)的距離之和是15,求的值.【答案】(1)見解析(2)或3(3)或或【分析】(1)根據(jù)作線段的尺規(guī)作圖方法即可得;(2)先求出點(diǎn)表示的有理數(shù)是,再求出點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)所需時(shí)間為2秒,然后分兩種情況:①和②,根據(jù)數(shù)軸的性質(zhì)建立方程,解方程即可得;(3)分三種情況:①,②和③,分別求出的長,分別建立方程,解方程即可得.【詳解】(1)解:如圖,點(diǎn)即為所求;

(2)解:,,點(diǎn)表示的有理數(shù)是,點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)所需時(shí)間為秒,①當(dāng)時(shí),點(diǎn)表示的有理數(shù)為,,,,,解得,符合題設(shè);②當(dāng)時(shí),,,,,解得,符合題設(shè),綜上,的值為或3;(3)解:①當(dāng)時(shí),點(diǎn)表示的有理數(shù)為,,點(diǎn),點(diǎn),點(diǎn),點(diǎn)到原點(diǎn)的距離之和是15,,解得,符合題設(shè);②當(dāng)時(shí),,點(diǎn),點(diǎn),點(diǎn),點(diǎn)到原點(diǎn)的距離之和是15,,解得,符合題設(shè);③當(dāng)時(shí),,點(diǎn),點(diǎn),點(diǎn),點(diǎn)到原點(diǎn)的距離之和是15,,解得,符合題設(shè),綜上,的值為或或.【點(diǎn)睛】本題考查了作線段、數(shù)軸上的動(dòng)點(diǎn)問題、一元一次方程的應(yīng)用,熟練掌握數(shù)軸的性質(zhì)是解題關(guān)鍵.11.(2023秋·吉林·七年級(jí)??计谀┤鐖D,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為16,點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.(1),兩點(diǎn)間的距離等于________,線段的中點(diǎn)表示的數(shù)為________;(2)用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為________,點(diǎn)表示的數(shù)為________;(3)求當(dāng)為何值時(shí),?(4)若點(diǎn)為的中點(diǎn),當(dāng)點(diǎn)到原點(diǎn)距離為時(shí),________.【答案】(1)20,6(2),(3)或6(4)2【分析】(1)由數(shù)軸上兩點(diǎn)間的距離公式可求,兩點(diǎn)之間的距離,由中點(diǎn)公式可求線段的中點(diǎn)表示的數(shù);(2)根據(jù)點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng),進(jìn)行計(jì)算即可得到答案;(3)由,得到方程,求解即可得到答案;(4)由線段中點(diǎn)的性質(zhì)得出,求解即可得到答案.【詳解】(1)解:點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為16,,兩點(diǎn)間的距離等于,線段的中點(diǎn)表示的數(shù)為,故答案為:20,6;(2)解:點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),秒后,點(diǎn)表示的數(shù)為:,點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng),秒后,點(diǎn)表示的數(shù)為:,故答案為:,;(3)解:,,或6,或6時(shí),;(4)解:點(diǎn)為的中點(diǎn),點(diǎn)到原點(diǎn)距離為8,,解得:或(負(fù)值舍去),,故答案為:2.【點(diǎn)睛】本題主要考查了一元一次方程的應(yīng)用,數(shù)軸上兩點(diǎn)之間的距離,用數(shù)軸上的點(diǎn)表示有理數(shù),與線段中點(diǎn)有關(guān)的計(jì)算,熟練掌握以上知識(shí)點(diǎn)是解題的關(guān)鍵.12.(2022春·黑龍江哈爾濱·七年級(jí)統(tǒng)考期末)如圖,在數(shù)軸上,點(diǎn)為原點(diǎn),點(diǎn)在原點(diǎn)左側(cè),點(diǎn)在原點(diǎn)右側(cè),點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,.

(1).(2)動(dòng)點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)、的運(yùn)動(dòng)速度分別是2個(gè)單位秒和3個(gè)單位秒,當(dāng)點(diǎn)與點(diǎn)重合時(shí),運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)為何值時(shí),;(3)在(2)的條件下,點(diǎn)為線段的中點(diǎn),點(diǎn)為的中點(diǎn).當(dāng)時(shí),求出相應(yīng)值,并直接寫出線段的長.【答案】(1)20;(2)秒或秒;(3)10,40【分析】(1)根據(jù)數(shù)軸上兩點(diǎn)距離公式,即可求出的值;(2)由題意可知,點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,進(jìn)而得到,,再根據(jù)列絕對(duì)值方程,求解即可得到答案;(3)根據(jù)線段中點(diǎn)的定義,得到點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,根據(jù)數(shù)軸上兩點(diǎn)距離公式,得到,再得出,然后根據(jù),求出,從而得出點(diǎn)表示的數(shù)為,即可求出的長.【詳解】(1)解:點(diǎn)在原點(diǎn)左側(cè),點(diǎn)在原點(diǎn)右側(cè),點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,,,,故答案為:20;(2)解:動(dòng)點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)、的運(yùn)動(dòng)速度分別是2個(gè)單位秒和3個(gè)單位秒,點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)為原點(diǎn),,,,,解得:或20,當(dāng)為秒或秒時(shí),;(3)解:點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為20,點(diǎn)為線段的中點(diǎn),點(diǎn)表示的數(shù)為:,點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)為的中點(diǎn).,點(diǎn)表示的數(shù)為,,,,解得:,點(diǎn)表示的數(shù)為,.【點(diǎn)睛】本題考查了數(shù)軸的性質(zhì),數(shù)軸上兩點(diǎn)的距離,線段中點(diǎn),動(dòng)點(diǎn)問題,根據(jù)題意正確得出所需線段的長度是解題關(guān)鍵.13.(2023秋·河南焦作·七年級(jí)統(tǒng)考期末)如圖,點(diǎn)是數(shù)軸的原點(diǎn),點(diǎn)、點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)是6,且,(1)求線段的長;(2)點(diǎn)以每秒1個(gè)單位的速度在數(shù)軸上勻速運(yùn)動(dòng),點(diǎn)以每秒2個(gè)單位的速度在數(shù)軸上勻速運(yùn)動(dòng).設(shè)點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為秒,若點(diǎn)能夠重合,求出這時(shí)的運(yùn)動(dòng)時(shí)間;(3)在(2)的條件下,當(dāng)點(diǎn)和點(diǎn)都向同一個(gè)方向運(yùn)動(dòng)時(shí),直接寫出經(jīng)過多少秒后,點(diǎn)兩點(diǎn)間的距離為20個(gè)單位.【答案】(1)18(2)6秒或18秒(3)2秒或38秒【分析】(1)先求出,,再根據(jù)即可得;(2)分兩種情況:①當(dāng)點(diǎn)均向右運(yùn)動(dòng)時(shí),②當(dāng)點(diǎn)相向運(yùn)動(dòng)時(shí),分別建立方程,解方程即可得;(3)設(shè)經(jīng)過秒后,點(diǎn)兩點(diǎn)間的距離為20個(gè)單位,分兩種情況:①當(dāng)點(diǎn)均向右運(yùn)動(dòng)時(shí),②當(dāng)點(diǎn)均向左運(yùn)動(dòng)時(shí),分別建立方程,解方程即可得.【詳解】(1)解:∵點(diǎn)表示的數(shù)是6,,,,.(2)解:①當(dāng)點(diǎn)均向右運(yùn)動(dòng)時(shí),則,解得;②當(dāng)點(diǎn)相向運(yùn)動(dòng)時(shí),則,解得,綜上,若點(diǎn)能夠重合,這時(shí)的運(yùn)動(dòng)時(shí)間為6秒或18秒.(3)解:設(shè)經(jīng)過秒后,點(diǎn)兩點(diǎn)間的距離為20個(gè)單位,①當(dāng)點(diǎn)均向右運(yùn)動(dòng)時(shí),則,解得;②當(dāng)點(diǎn)均向左運(yùn)動(dòng)時(shí),則,解得,綜上,經(jīng)過2秒或38秒后,點(diǎn)兩點(diǎn)間的距離為20個(gè)單位.【點(diǎn)睛】本題考查了數(shù)軸、一元一次方程的應(yīng)用,熟練掌握數(shù)軸的性質(zhì),正確建立方程是解題關(guān)鍵.14.(2023春·黑龍江哈爾濱·七年級(jí)校聯(lián)考期末)如圖所示,點(diǎn)表示數(shù)軸的原點(diǎn),點(diǎn)在原點(diǎn)的左側(cè),所表示的數(shù)是,點(diǎn)在原點(diǎn)的右側(cè),所表示的數(shù)是,并且關(guān)于的多項(xiàng)式是三次二項(xiàng)式.

(1)求線段的長;(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段運(yùn)動(dòng),到達(dá)點(diǎn)停止,速度是個(gè)單位長度/秒,點(diǎn)A為線段的中點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)用含有的式子表示線段的長;(3)在(2)的條件下,是否存在值,使線段的長度是?并說明理由.【答案】(1)(2)或(3)存在,1或3【分析】(1)根據(jù)關(guān)于的多項(xiàng)式是三次二項(xiàng)式得到,,得到點(diǎn)所表示的數(shù)是,點(diǎn)所表示的數(shù)是4,即可得到線段的長;(2)當(dāng)點(diǎn)在線段上時(shí),,由中點(diǎn)的定義即可得到線段的長;當(dāng)點(diǎn)在線段上時(shí),,由中點(diǎn)的定義即可得到線段的長;(3)分點(diǎn)在線段上和點(diǎn)在線段上兩種情況,列方程求解即可.【詳解】(1)∵關(guān)于的多項(xiàng)式是三次二項(xiàng)式,∴,,解得,,∴點(diǎn)所表示的數(shù)是,點(diǎn)所表示的數(shù)是4,∴;(2)當(dāng)點(diǎn)在線段上時(shí),,

∵點(diǎn)A為線段的中點(diǎn),∴;當(dāng)點(diǎn)在線段上時(shí),,

∵點(diǎn)A為線段的中點(diǎn),∴;∴線段的長為或;(3)當(dāng)點(diǎn)在線段上時(shí),,解得,當(dāng)點(diǎn)在線段上時(shí),,解得,故存在值,當(dāng)或時(shí),線段的長度是.【點(diǎn)睛】此題考查了一元一次方程的應(yīng)用、列代數(shù)式、數(shù)軸上兩點(diǎn)之間的距離、線段的中點(diǎn)等知識(shí),數(shù)形結(jié)合和分類討論是解題的關(guān)鍵.15.(2023·綿陽市·七年級(jí)專題練習(xí))如圖,P是線段上一點(diǎn),,C,D兩動(dòng)點(diǎn)分別從點(diǎn)P,B同時(shí)出發(fā)沿射線向左運(yùn)動(dòng),到達(dá)點(diǎn)A處即停止運(yùn)動(dòng).

(1)若點(diǎn)C,D的速度分別是,.①當(dāng)動(dòng)點(diǎn)C,D運(yùn)動(dòng)了2s,且點(diǎn)D仍在線段上時(shí),_________cm;②若點(diǎn)C到達(dá)中點(diǎn)時(shí),點(diǎn)D也剛好到達(dá)的中點(diǎn),則_________;(2)若動(dòng)點(diǎn)C,D的速度分別是,,點(diǎn)C,D在運(yùn)動(dòng)時(shí),總有,求的長【答案】(1)①12;②(2)【分析】(1)①先分別求出,再根據(jù)即可得;②設(shè)運(yùn)動(dòng)時(shí)間為,則,再根據(jù)線段中點(diǎn)的定義可得,由此即可得;(2)設(shè)運(yùn)動(dòng)時(shí)間為,則,從而可得,再根據(jù)可得,從而可得,由此即可得.【詳解】(1)解:①依題意得:,,點(diǎn)仍在線段上,∴,故答案為:;②設(shè)運(yùn)動(dòng)時(shí)間為,則,∵當(dāng)點(diǎn)到達(dá)中點(diǎn)時(shí),點(diǎn)也剛好到達(dá)的中點(diǎn),∴,∴,故答案為:.(2)解:設(shè)運(yùn)動(dòng)時(shí)間為,則,∴,∵,∴,∵,∴,∴.【點(diǎn)睛】本題考查了與線段有關(guān)的動(dòng)點(diǎn)問題、線段的和與差、線段的中點(diǎn),熟練掌握線段之間的數(shù)量關(guān)系是解題的關(guān)鍵.16.(2023春·廣東梅州·七年級(jí)??奸_學(xué)考試)如圖,是線段上一點(diǎn),,,兩點(diǎn)分別從,出發(fā)以,的速度同時(shí)沿直線向左運(yùn)動(dòng)(在線段上,在線段上),運(yùn)動(dòng)的時(shí)間為.(1)若,運(yùn)動(dòng)時(shí),且,請(qǐng)求出的長.(2)若,運(yùn)動(dòng)到任一時(shí)刻時(shí),總有,的長度是否變化?若不變,請(qǐng)求出的長,若變化,請(qǐng)說明理由.(3)在()的條件下,是直線上一點(diǎn),且,求的長.【答案】(1);(2)的長度不變;(3)或【分析】(1)設(shè)為,則為,根據(jù)線段的和差得到關(guān)于x的方程,解方程即可得到答案;(2)設(shè)長為,則,由題意可得,得到關(guān)于x的方程,求出x的值,即可做出判斷;(3)分點(diǎn)在點(diǎn)左側(cè)和點(diǎn)在點(diǎn)右側(cè)兩種情況分別求解即可.【詳解】(1)解:設(shè)為,則為,由題意可得,,,,,.(2)設(shè)長為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論