湖北省恩施州巴東一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
湖北省恩施州巴東一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
湖北省恩施州巴東一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
湖北省恩施州巴東一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
湖北省恩施州巴東一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省恩施州巴東一中2025屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則()A.3 B.2 C.1 D.02.設(shè)函數(shù),其中均為非零常數(shù),若,則的值是()A.2 B.4 C.6 D.不確定3.已知一個等比數(shù)列項數(shù)是偶數(shù),其偶數(shù)項之和是奇數(shù)項之和的3倍,則這個數(shù)列的公比為()A.2 B.3 C.4 D.64.如圖所示,AB是半圓O的直徑,VA垂直于半圓O所在的平面,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),M,N分別為VA,VC的中點(diǎn),則下列結(jié)論正確的是()A.MN//AB B.平面VAC⊥平面VBCC.MN與BC所成的角為45° D.OC⊥平面VAC5.角的終邊經(jīng)過點(diǎn),那么的值為()A. B. C. D.6.已知直線,,則與之間的距離為()A. B. C.7 D.7.己知,,若軸上方的點(diǎn)滿足對任意,恒有成立,則點(diǎn)縱坐標(biāo)的最小值為()A. B. C.1 D.28.如果點(diǎn)位于第四象限,則角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角9.已知直三棱柱的所有棱長都相等,為的中點(diǎn),則與所成角的余弦值為()A. B. C. D.10.兩直角邊分別為1,的直角三角形繞其斜邊所在的直線旋轉(zhuǎn)一周,得到的幾何體的表面積是()A. B.3π C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,為測量出高,選擇和另一座山的山頂為測量觀測點(diǎn),從點(diǎn)測得點(diǎn)的仰角,點(diǎn)的仰角以及;從點(diǎn)測得.已知山高,則山高_(dá)_________.12.如圖,已知圓,六邊形為圓的內(nèi)接正六邊形,點(diǎn)為邊的中點(diǎn),當(dāng)六邊形繞圓心轉(zhuǎn)動時,的取值范圍是________.13.已知空間中的三個頂點(diǎn)的坐標(biāo)分別為,則BC邊上的中線的長度為________.14.設(shè)O點(diǎn)在內(nèi)部,且有,則的面積與的面積的比為.15.利用直線與圓的有關(guān)知識求函數(shù)的最小值為_______.16.若角的終邊經(jīng)過點(diǎn),則實數(shù)的值為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,正方體.(1)求證:平面;(2)求異面直線AC與所成角的大?。?8.設(shè)函數(shù)(1)若對于一切實數(shù)恒成立,求的取值范圍;(2)若對于恒成立,求的取值范圍.19.已知數(shù)列和中,數(shù)列的前n項和為,若點(diǎn)在函數(shù)的圖象上,點(diǎn)在函數(shù)的圖象上.設(shè)數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和;(3)求數(shù)列的最大值.20.已知分別為內(nèi)角的對邊試從下列①②條件中任選一個作為已知條件并完成下列(1)(2)兩問的解答①;②.(1)求角(2)若,,求的面積.21.已知,,且(Ⅰ)求的值;(Ⅱ)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

先求內(nèi)層函數(shù),將所求值代入分段函數(shù)再次求解即可【詳解】,則故選:B【點(diǎn)睛】本題考查分段函數(shù)具體函數(shù)值的求法,屬于基礎(chǔ)題2、C【解析】

根據(jù)正弦、余弦的誘導(dǎo)公式,由,可以得到等式,求出的表達(dá)式,結(jié)合剛得到的等式求值即可.【詳解】因為,所以.故選:C【點(diǎn)睛】本題考查三角函數(shù)的化簡求值,考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】

由數(shù)列為等比數(shù)列,則,結(jié)合題意即可得解.【詳解】解:因為數(shù)列為等比數(shù)列,設(shè)等比數(shù)列的公比為,則,又是奇數(shù)項之和的3倍,則,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),重點(diǎn)考查了等比數(shù)列公比的運(yùn)算,屬基礎(chǔ)題.4、B【解析】

對每一個選項逐一分析判斷得解.【詳解】A.∵M(jìn),N分別為VA,VC的中點(diǎn),∴MN//AC,又AC⊥BC,∴MN與BC所成的角為90°,故C不正確;∵M(jìn)N//AC,AC∩AB=A,∴MN//AB不成立,故A不正確.B.∵AB是⊙O的直徑,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),∴AC⊥BC,∵VA垂直⊙O所在的平面,BC?⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC?平面VBC,∴平面VAC⊥平面VBC,故B正確;C.∵AB是⊙O的直徑,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),∴AC⊥BC,又A、B、C、O共面,∴OC與AC不垂直,∴OC⊥平面VAC不成立,故B不正確;∵M(jìn),N分別為VA,VC的中點(diǎn),∴MN//AC,又AC⊥BC,∴MN與BC所成的角為90°,故C不正確;D.∵AB是⊙O的直徑,點(diǎn)C是圓周上不同于A,B的任意一點(diǎn),∴AC⊥BC,又A、B、C、O共面,∴OC與AC不垂直,∴OC⊥平面VAC不成立,故D不正確.故選B.【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查異面直線所成的角的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、C【解析】,故選C。6、D【解析】

化簡的方程,再根據(jù)兩平行直線的距離公式,求得兩條平行直線間的距離.【詳解】,由于平行,故有兩條平行直線間的距離公式得距離為,故選D.【點(diǎn)睛】本小題主要考查兩條平行直線間的距離公式,屬于基礎(chǔ)題.7、D【解析】

由題意首先利用平面向量的坐標(biāo)運(yùn)算法則確定縱坐標(biāo)的解析式,然后結(jié)合二次函數(shù)的性質(zhì)確定點(diǎn)P縱坐標(biāo)的最小值即可.【詳解】設(shè),則,,故,恒成立,即恒成立,據(jù)此可得:,故,當(dāng)且僅當(dāng)時等號成立.據(jù)此可得的最小值為,則的最小值為.即點(diǎn)縱坐標(biāo)的最小值為2.故選D.【點(diǎn)睛】本題主要考查平面向量的坐標(biāo)運(yùn)算,二次函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.8、C【解析】

由點(diǎn)位于第四象限列不等式,即可判斷的正負(fù),問題得解.【詳解】因為點(diǎn)位于第四象限所以,所以所以角是第三象限角故選C【點(diǎn)睛】本題主要考查了點(diǎn)的坐標(biāo)與點(diǎn)的位置的關(guān)系,還考查了等價轉(zhuǎn)化思想及三角函數(shù)值的正負(fù)與角的終邊的關(guān)系,屬于基礎(chǔ)題.9、D【解析】

取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【詳解】由題意,取的中點(diǎn),連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【點(diǎn)睛】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、A【解析】

由題知該旋轉(zhuǎn)體為兩個倒立的圓錐底對底組合在一起,根據(jù)圓錐的側(cè)面積計算公式可得.【詳解】由題得直角三角形的斜邊為2,則斜邊上的高為.由題知該幾何體為兩個倒立的圓錐底對底組合在一起,其中,故選.【點(diǎn)睛】本題考查旋轉(zhuǎn)體的定義,圓錐的表面積的計算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點(diǎn):正弦定理的應(yīng)用.12、【解析】

先求出,再化簡得即得的取值范圍.【詳解】由題得OM=,由題得由題得..所以的取值范圍是.故答案為【點(diǎn)睛】本題主要考查平面向量的運(yùn)算和數(shù)量積運(yùn)算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.13、【解析】

先求出BC的中點(diǎn),由此能求出BC邊上的中線的長度.【詳解】解:因為空間中的三個頂點(diǎn)的坐標(biāo)分別為,所以BC的中點(diǎn)為,所以BC邊上的中線的長度為:,故答案為:.【點(diǎn)睛】本題考查三角形中中線長的求法,考查中點(diǎn)坐標(biāo)公式、兩點(diǎn)間距離的求法等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.14、3【解析】

分別取AC、BC的中點(diǎn)D、E,

,

,即,

是DE的一個三等分點(diǎn),

,

故答案為:3.15、【解析】

令得,轉(zhuǎn)化為z==,再利用圓心到直線距離求最值即可【詳解】令,則故轉(zhuǎn)化為z==,表示上半個圓上的點(diǎn)到直線的距離的最小值的5倍,即故答案為3【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,考查數(shù)形結(jié)合思想,是中檔題16、.【解析】

利用三角函數(shù)的定義以及誘導(dǎo)公式求出的值.【詳解】由誘導(dǎo)公式得,另一方面,由三角函數(shù)的定義得,解得,故答案為.【點(diǎn)睛】本題考查誘導(dǎo)公式與三角函數(shù)的定義,解題時要充分利用誘導(dǎo)公式求特殊角的三角函數(shù)值,并利用三角函數(shù)的定義求參數(shù)的值,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)證明,,即得證;(2)求出即得異面直線AC與所成角的大?。驹斀狻浚?)證明:因為為正方體,所以ABCD為正方形.所以,又因為平面ABCD,平面ABCD,故,又,平面,所以平面.(2)因為,所以直線AC與所成的角或補(bǔ)角即為AC與的角,又三角形為等邊三角形,所以,即直線AC與所成的角為.【點(diǎn)睛】本題主要考查線面位置關(guān)系的證明,考查異面直線所成角的計算,意在考查學(xué)生對這些知識的理解掌握水平.18、(1)(2)【解析】

(1)由不等式恒成立,結(jié)合二次函數(shù)的性質(zhì),分類討論,即可求解;(2)要使對于恒成立,整理得只需恒成立,結(jié)合基本不等式求得最值,即可求解.【詳解】(1)由題意,要使不等式恒成立,①當(dāng)時,顯然成立,所以時,不等式恒成立;②當(dāng)時,只需,解得,綜上所述,實數(shù)的取值范圍為.(2)要使對于恒成立,只需恒成立,只需,又因為,只需,令,則只需即可因為,當(dāng)且僅當(dāng),即時等式成立;因為,所以,所以.【點(diǎn)睛】本題主要考查了含參數(shù)的不等式的恒成立問題的求解,其中解答中把不等式的恒成立問題轉(zhuǎn)化為函數(shù)的最值問題是解答的關(guān)鍵,著重考查了分類討論思想,以及轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.19、(1)(2)(3)【解析】

(1)先根據(jù)題設(shè)知,再利用求得,驗證符合,最后答案可得.

(2)由題設(shè)可知,把代入,然后用錯位相減法求和;(3)計算,判斷其大于零時的范圍,可得數(shù)列取最大值時的項數(shù),進(jìn)而可得最大值..【詳解】解:(1)由已知得:,∵當(dāng)時,,又當(dāng)時,符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即為最大,故最大值為.【點(diǎn)睛】本題主要考查了數(shù)列的遞推式解決數(shù)列的通項公式和求和問題,考查數(shù)列最大項的求解,是中檔題.20、(1)選擇①,;選擇②,(2)【解析】

(1)選擇①,利用正弦定理余弦定理化簡即得C;選擇②,利用正弦定理化簡即得C的值;(2)根據(jù)余弦定理得,再求的面積.【詳解】解:(1)選擇①根據(jù)正弦定理得,從而可得,根據(jù)余弦定理,解得,因為,故.選擇②根據(jù)正弦定理有,即,即因為,故,從而有,故(2)根據(jù)余弦定理得,得,即,解得,又因為的面積為,故的面積為.【點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論