版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省合肥市一六八中數學高一下期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若a<b<0,則下列不等式關系中,不能成立的是()A. B. C. D.2.函數的最大值為()A. B. C. D.3.已知銳角△ABC的面積為,BC=4,CA=3,則角C的大小為()A.75° B.60° C.45° D.30°4.設,是兩條不同的直線,,是兩個不同的平面,是下列命題正確的是()A.若,,則 B.若,,,則C.若,,,則 D.若,,,則5.已知三棱柱()A. B. C. D.6.如圖,在中,,是邊上的高,平面,則圖中直角三角形的個數是()A. B. C. D.7.一個幾何體的三視圖如圖所示,那么此幾何體的側面積(單位:cm2)為()A.48 B.64 C.120 D.808.圓與圓的位置關系是()A.相切 B.內含 C.相離 D.相交9.若變量滿足約束條件則的最小值等于()A. B. C. D.210.如圖是一個射擊靶的示意圖,其中每個圓環(huán)的寬度與中心圓的半徑相等.某人朝靶上任意射擊一次沒有脫靶,則其命中深色部分的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,則的單位向量的坐標為_______.12.若,則_________.13.把函數的圖像上各點向右平移個單位,再把橫坐標變?yōu)樵瓉淼囊话耄v坐標擴大到原來的4倍,則所得的函數的對稱中心坐標為________14.如圖,在正方體中,點是線段上的動點,則直線與平面所成的最大角的余弦值為________.15.在等比數列{an}中,a116.在數列中,按此規(guī)律,是該數列的第______項三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知分別為內角的對邊試從下列①②條件中任選一個作為已知條件并完成下列(1)(2)兩問的解答①;②.(1)求角(2)若,,求的面積.18.中,D是邊BC上的點,滿足,,.(1)求;(2)若,求BD的長.19.在直角坐標系中,點,圓的圓心為,半徑為2.(Ⅰ)若,直線經過點交圓于、兩點,且,求直線的方程;(Ⅱ)若圓上存在點滿足,求實數的取值范圍.20.己知函數.(1)若,,求;(2)當為何值時,取得最大值,并求出最大值.21.已知函數.(1)求(x)的最小正周期和單調遞增區(qū)間;(2)求f(x)在區(qū)間上的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據的單調性,可知成立,不成立;根據和的單調性,可知成立.【詳解】在上單調遞減,成立又,不成立在上單調遞增,成立在上單調遞減,成立故選:【點睛】本題考查利用函數單調性比較大小的問題,關鍵是能夠建立起合適的函數模型,根據自變量的大小關系,結合單調性得到結果.2、D【解析】
令,根據正弦型函數的性質可得,那么,可將問題轉化為二次函數在定區(qū)間上的最值問題.【詳解】由題意,令,可得,,∴,∴原函數的值域與函數的值域相同.∵函數圖象的對稱軸為,,取得最大值為.故選:D.【點睛】本題考查三角函數中的恒等變換、函數的值域,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意換元法的使用,將問題轉化為二次函數的值域問題.3、B【解析】試題分析:由三角形的面積公式,得,即,解得,又因為三角形為銳角三角形,所以.考點:三角形的面積公式.4、D【解析】
根據空間中線線,線面,面面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,則可能平行、相交、或異面;故A錯;B選項,若,,,則可能平行或異面;故B錯;C選項,若,,,如果再滿足,才會有則與垂直,所以與不一定垂直;故C錯;D選項,若,,則,又,由面面垂直的判定定理,可得,故D正確.故選D【點睛】本題主要考查空間的線面,面面位置關系,熟記位置關系,以及判定定理即可,屬于常考題型.5、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=6、C【解析】
根據線面垂直得出一些相交直線垂直,以及找出題中一些已知的相交直線垂直,由這些條件找出圖中的直角三角形.【詳解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.綜上可知:直角三角形的個數是個,故選C.【點睛】本題考查直角三角形個數的確定,考查相交直線垂直,解題時可以充分利用直線與平面垂直的性質得到,考查推理能力,屬于中等題.7、D【解析】
先還原幾何體,再根據錐體側面積公式求結果.【詳解】幾何體為一個正四棱錐,底面為邊長為8的正方體,側面為等腰三角形,底邊上的高為5,因此四棱錐的側面積為,選D.【點睛】解答此類題目的關鍵是由多面體的三視圖想象出空間幾何體的形狀并畫出其直觀圖.8、D【解析】
寫出兩圓的圓心,根據兩點間距離公式求得兩圓心的距離,發(fā)現,所以兩圓相交。比較三者之間大小判斷位置關系?!驹斀狻績蓤A的圓心分別為:,,半徑分別為:,,兩圓心距為:,所以,兩圓相交,選D。【點睛】通過比較圓心距和半徑和與半徑差直接的關系判斷,即比較三者之間大小。9、A【解析】
由約束條件作出可行域,由圖得到最優(yōu)解,求出最優(yōu)解的坐標,數形結合得答案.【詳解】解:由變量x,y滿足約束條件作出可行域如圖,由圖可知,最優(yōu)解為A,聯(lián)立,解得A(﹣1,).∴z=2x﹣y的最小值為2×(﹣1).故選A.【點睛】本題考查了簡單的線性規(guī)劃,考查了數形結合的解題思想方法,是中檔題.10、D【解析】
分別求出大圓面積和深色部分面積即可得解.【詳解】設中心圓的半徑為,所以中心圓的面積為,8環(huán)面積為,射擊靶的面積為,所以命中深色部分的概率為.故選:D【點睛】此題考查幾何概型,屬于面積型,關鍵在于準確求解面積,根據圓環(huán)特征分別求出面積即可得解.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
由結論“與方向相同的單位向量為”可求出的坐標.【詳解】,所以,,故答案為.【點睛】本題考查單位向量坐標的計算,考查共線向量的坐標運算,充分利用共線單位向量的結論可簡化計算,考查運算求解能力,屬于基礎題.12、【解析】
利用誘導公式求解即可【詳解】,故答案為:【點睛】本題考查誘導公式,是基礎題13、,【解析】
根據三角函數的圖象變換,求得函數的解析式,進而求得函數的對稱中心,得到答案.【詳解】由題意,把函數的圖像上各點向右平移個單位,可得,再把圖象上點的橫坐標變?yōu)樵瓉淼囊话?,可得,把函數縱坐標擴大到原來的4倍,可得,令,解得,所以函數的對稱中心為.故答案為:.【點睛】本題主要考查了三角函數的圖象變換,以及三角函數的對稱中心的求解,其中解答中熟練三角函數的圖象變換,以及三角函數的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、【解析】
作的中心,可知平面,所以直線與平面所成角為,當在中點時,最大,求出即可?!驹斀狻吭O正方體的邊長為1,連接,由于為正方體,所以為正四面體,棱長為,為等邊三角形,作的中心,連接,,由于為正四面體,為的中心,所以平面,所以為直線與平面所成角,則當在中點時,最大,當在中點時,由于為正四面體,棱長為,等邊三角形,為的中心,所以,,所以直線與平面所成的最大角的余弦值為故直線與平面所成的最大角的余弦值為故答案為【點睛】本題考查線面所成角,解題的關鍵是確定當在中點時,最大,考查學生的空間想象能力以及計算能力。15、64【解析】由題設可得q3=8?q=3,則a716、【解析】
分別求出,,,結果構成等比數列,進而推斷數列是首相為2,公比為2的等比數列,進而求得數列的通項公式,再由求得答案.【詳解】,,,依此類推可得,,,即.,解得.故答案為:7.【點睛】本題考查利用數列的遞推關系求數列的通項公式,求解的關鍵在于推斷是等比數列,再用累加法求得數列的通項公式,考查邏輯推理能力和運算求解能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)選擇①,;選擇②,(2)【解析】
(1)選擇①,利用正弦定理余弦定理化簡即得C;選擇②,利用正弦定理化簡即得C的值;(2)根據余弦定理得,再求的面積.【詳解】解:(1)選擇①根據正弦定理得,從而可得,根據余弦定理,解得,因為,故.選擇②根據正弦定理有,即,即因為,故,從而有,故(2)根據余弦定理得,得,即,解得,又因為的面積為,故的面積為.【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.18、(1)(2)【解析】
(1)由中,D是邊BC上的點,根據面積關系求得,再結合正弦定理,即可求解.(2)由,化簡得到,再結合,解得,進而利用勾股定理求得的長.【詳解】(1)由題意,在中,D是邊BC上的點,可得,所以又由正弦定理,可得.(2)由,可得,所以,即,由(1)知,解得,又由,所以.【點睛】本題主要考查了三角形的正弦定理和三角形的面積公式的應用,其中解答中熟記解三角形的正弦定理,以及熟練應用三角的面積關系,列出方程求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)勾股定理求出圓心到直線的距離d,利用d=1以直線的斜率存在、不存在兩種情況進行分類討論;(Ⅱ)設,由求出x、y滿足的關系式,可得點在圓上,推出圓與圓有公共點,所以,列出不等式求解即可.【詳解】(Ⅰ)當,圓心為,圓的方程為,設圓心到直線的距離為,則.①若直線的斜率存在,設直線的方程為,即,,解得,此時的方程為,即.②若直線的斜率不存在,直線的方程為,驗證滿足,符合題意.綜上所述,直線的方程為或.(Ⅱ)設,則,于是由得,即,所以點在圓上,又點在圓上,故圓與圓有公共點,即,于是,解得,因此實數的取值范圍是.【點睛】本題考查直線與圓的位置關系的綜合應用,向量的數量積,根據圓與圓的位置關系求參數,屬于中檔題.20、(1);(1),1.【解析】
(1)由題得,再求出x的值;(1)先化簡得到,再利用三角函數的性質求函數的最大值及此時x的值.【詳解】(1)令,則,因為,所以.(1),當,即時,的最大值為1.【點睛】本題主要考查解簡單的三角方程,考查三角函數的最值,意在考查學生對這些知識的理解掌握水平,屬于基礎題.21、(1),的增區(qū)間是.(2).【解析】試題分析:(1)利用兩角和正弦公式和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025教師公寓出租合同樣本
- 2025車輛承包合同范本
- 電信詐騙的分析與對策
- 科技節(jié)慶活動的多元策劃與實施經驗
- 趣味數學課堂寓教于樂的秘密武器
- 2024年智慧物流投資申請報告
- 2024年農業(yè)運輸機械項目資金籌措計劃書代可行性研究報告
- 二零二五年度酒店客房預訂取消退款合同4篇
- 二零二五年度創(chuàng)業(yè)型企業(yè)環(huán)保設施改造升級與合規(guī)審查合同4篇
- 2025年北師大版九年級生物上冊階段測試試卷
- 2025年上半年江蘇連云港灌云縣招聘“鄉(xiāng)村振興專干”16人易考易錯模擬試題(共500題)試卷后附參考答案
- DB3301T 0382-2022 公共資源交易開評標數字見證服務規(guī)范
- 人教版2024-2025學年八年級上學期數學期末壓軸題練習
- 江蘇省無錫市2023-2024學年八年級上學期期末數學試題(原卷版)
- 俄語版:中國文化概論之中國的傳統(tǒng)節(jié)日
- 2022年湖南省公務員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- 婦科一病一品護理匯報
- 哪吒之魔童降世
- 2022年上海市各區(qū)中考一模語文試卷及答案
- 2024年全國統(tǒng)一高考數學試卷(新高考Ⅱ)含答案
- 我國無菌包裝行業(yè)消費量已超千億包-下游需求仍存擴容潛力
評論
0/150
提交評論