




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省白城市通榆縣第一中學(xué)數(shù)學(xué)高一下期末檢測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列說法錯誤的是()A.若樣本的平均數(shù)為5,標(biāo)準(zhǔn)差為1,則樣本的平均數(shù)為11,標(biāo)準(zhǔn)差為2B.身高和體重具有相關(guān)關(guān)系C.現(xiàn)有高一學(xué)生30名,高二學(xué)生40名,高三學(xué)生30名,若按分層抽樣從中抽取20名學(xué)生,則抽取高三學(xué)生6名D.兩個變量間的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越大2.已知數(shù)列滿足,為其前項(xiàng)和,則不等式的的最大值為()A.7 B.8 C.9 D.103.已知,表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知圓C的半徑為2,在圓內(nèi)隨機(jī)取一點(diǎn)P,并以P為中點(diǎn)作弦AB,則弦長的概率為A. B. C. D.5.函數(shù)y=tan(–2x)的定義域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}6.某學(xué)校為了解1000名新生的身體素質(zhì),將這些學(xué)生編號1,2,……,1000,從這些新生中用系統(tǒng)抽樣方法等距抽取50名學(xué)生進(jìn)行體質(zhì)測驗(yàn).若66號學(xué)生被抽到,則下面4名學(xué)生中被抽到的是()A.16 B.226 C.616 D.8567.在中,,BC邊上的高等于,則()A. B. C. D.8.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞減的是(
)A. B. C. D.9.函數(shù)y=sin2x的圖象可能是A. B.C. D.10.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.對于正項(xiàng)數(shù)列,定義為的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為,則數(shù)列的通項(xiàng)公式為_____.12.若數(shù)列滿足,,則的最小值為__________________.13.在等差數(shù)列中,公差不為零,且、、恰好為某等比數(shù)列的前三項(xiàng),那么該等比數(shù)列公比的值等于____________.14.三棱錐的各頂點(diǎn)都在球的球面上,,平面,,,球的表面積為,則的表面積為_______.15.已知圓錐如圖所示,底面半徑為,母線長為,則此圓錐的外接球的表面積為___.16.的內(nèi)角的對邊分別為.若,則的面積為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.18.已知函數(shù).(1)證明函數(shù)在定義域上單調(diào)遞增;(2)求函數(shù)的值域;(3)令,討論函數(shù)零點(diǎn)的個數(shù).19.在中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知.(1)求角B的大小;(2)設(shè)a=2,c=3,求b和的值.20.如圖,是正方形,是該正方形的中心,是平面外一點(diǎn),底面,是的中點(diǎn).求證:(1)平面;(2)平面平面.21.已知.(1)若三點(diǎn)共線,求實(shí)數(shù)的值;(2)證明:對任意實(shí)數(shù),恒有成立.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
利用平均數(shù)和方差的定義,根據(jù)線性回歸的有關(guān)知識和分層抽樣原理,即可判斷出答案.【詳解】對于A:若樣本的平均數(shù)為5,標(biāo)準(zhǔn)差為1,則樣本的平均數(shù)2×5+1=11,標(biāo)準(zhǔn)差為2×1=2,故正確對于B:身高和體重具有相關(guān)關(guān)系,故正確對于C:高三學(xué)生占總?cè)藬?shù)的比例為:所以抽取20名學(xué)生中高三學(xué)生有名,故正確對于D:兩個變量間的線性相關(guān)性越強(qiáng),應(yīng)是相關(guān)系數(shù)的絕對值越大,故錯誤故選:D【點(diǎn)睛】本題考查了線性回歸的有關(guān)知識,以及平均數(shù)和方差、分層抽樣原理的應(yīng)用問題,是基礎(chǔ)題.2、B【解析】
由題意,整理得出是一個首項(xiàng)為12,公比為的等比數(shù)列,從而求出,再求出其前項(xiàng)和,然后再求出的表達(dá)式,再代入數(shù)驗(yàn)證出的最大值即可.【詳解】由可得,即,所以數(shù)列是等比數(shù)列,又,所以,故,解得,(),所以的最大值為8.選B.【點(diǎn)睛】本題考查數(shù)列的遞推式以及數(shù)列求和的方法分組求和,屬于數(shù)列中的綜合題,考查了轉(zhuǎn)化的思想,構(gòu)造的意識,本題難度較大,思維能力要求高.3、A【解析】
根據(jù)線面垂直的判定與性質(zhì)、線面平行的判定與性質(zhì)依次判斷各個選項(xiàng)可得結(jié)果.【詳解】選項(xiàng):由線面垂直的性質(zhì)定理可知正確;選項(xiàng):由線面垂直判定定理知,需垂直于內(nèi)兩條相交直線才能說明,錯誤;選項(xiàng):若,則平行關(guān)系不成立,錯誤;選項(xiàng):的位置關(guān)系可能是平行或異面,錯誤.故選:【點(diǎn)睛】本題考查空間中線面平行與垂直相關(guān)命題的辨析,關(guān)鍵是能夠熟練掌握空間中直線與平面位置關(guān)系的判定與性質(zhì)定理.4、B【解析】
先求出臨界狀態(tài)時點(diǎn)P的位置,若,則點(diǎn)P與點(diǎn)C的距離必須大于或等于臨界狀態(tài)時與點(diǎn)C的距離,再根據(jù)幾何概型的概率計算公式求解.【詳解】如圖所示:當(dāng)時,此時,若,則點(diǎn)P必須位于以點(diǎn)C為圓心,半徑為1和半徑為2的圓環(huán)內(nèi),所以弦長的概率為:.故選B.【點(diǎn)睛】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時的情況,再判斷滿足條件的區(qū)域.5、A【解析】
根據(jù)誘導(dǎo)公式化簡解析式,由正切函數(shù)的定義域求出此函數(shù)的定義域.【詳解】由題意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函數(shù)的定義域是{x|x≠+,k∈Z},故選:A.【點(diǎn)睛】本題考查正切函數(shù)的定義域,以及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.6、B【解析】
抽樣間隔為,由第三組中的第6個數(shù)被抽取到,結(jié)合226是第12組中的第6個數(shù),從而可得結(jié)果.【詳解】從這些新生中用系統(tǒng)抽樣方法等距抽取50名學(xué)生進(jìn)行體質(zhì)測驗(yàn),抽樣間隔為,號學(xué)生被抽到,第四組中的第6個數(shù)被抽取到,226是第12組中的第6個數(shù),被抽到,故選:B.【點(diǎn)睛】本題主要考查系統(tǒng)抽樣的性質(zhì),確定抽樣間隔是解題的關(guān)鍵,屬于基礎(chǔ)題.7、C【解析】試題分析:設(shè),故選C.考點(diǎn):解三角形.8、D【解析】
利用函數(shù)的奇偶性和單調(diào)性,逐一判斷各個選項(xiàng)中的函數(shù)的奇偶性和單調(diào)性,進(jìn)而得出結(jié)論.【詳解】由于函數(shù)是奇函數(shù),不是偶函數(shù),故排除A;由于函數(shù)是偶函數(shù),但它在區(qū)間上單調(diào)遞增,故排除B;由于函數(shù)是奇函數(shù),不是偶函數(shù),故排除C;由于函數(shù)是偶函數(shù),且滿足在區(qū)間上單調(diào)遞減,故滿足條件.故答案為:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性的判定及應(yīng)用,其中解答中熟記函數(shù)的奇偶性的定義和判定方法,以及基本初等函數(shù)的奇偶性是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.9、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因?yàn)椋詾槠婧瘮?shù),排除選項(xiàng)A,B;因?yàn)闀r,,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).10、A【解析】
利用正弦定理把題設(shè)等式中的邊換成角的正弦,進(jìn)而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點(diǎn)睛】本題以三角形為載體,主要考查了正弦定理,向量的數(shù)量積的運(yùn)用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)的定義把帶入即可?!驹斀狻俊摺唷摺啖佟啖冖?②得∴故答案為:【點(diǎn)睛】本題主要考查了新定義題,解新定義題首先需要讀懂新定義,其次再根據(jù)題目的條件帶入新定義即可,屬于中等題。12、【解析】
由題又,故考慮用累加法求通項(xiàng)公式,再分析的最小值.【詳解】,故,當(dāng)且僅當(dāng)時成立.又為正整數(shù),且,故考查當(dāng)時.當(dāng)時,當(dāng)時,因?yàn)?故當(dāng)時,取最小值為.故答案為:.【點(diǎn)睛】本題主要考查累加法,求最小值時先用基本不等式,發(fā)現(xiàn)不滿足“三相等”,故考慮與相等時的取值最近的兩個正整數(shù).13、4【解析】
由題意將表示為的方程組求解得,即可得等比數(shù)列的前三項(xiàng)分別為﹑、,則公比可求【詳解】由題意可知,,又因?yàn)?,,代入上式可得,所以該等比?shù)列的前三項(xiàng)分別為﹑、,所以.故答案為:4【點(diǎn)睛】本題考查等差等比數(shù)列的基本量計算,考查計算能力,是基礎(chǔ)題14、【解析】
根據(jù)題意可證得,而,所以球心為的中點(diǎn).由球的表面積為,即可求出,繼而得出的值,求出三棱錐的表面積.【詳解】如圖所示:∵,平面,∴,又,故球心為的中點(diǎn).∵球的表面積為,∴,即有.∴,.∴,,,.故的表面積為.故答案為:.【點(diǎn)睛】本題主要考查三棱錐的表面積的求法,球的表面積公式的應(yīng)用,意在考查學(xué)生的直觀想象能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,再根據(jù)勾股定理可得求的半徑.【詳解】由圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,設(shè)球心為,球的半徑為,則,圓,因?yàn)?所以,所以,,則有.解得,則.【點(diǎn)睛】本題主要考查了幾何體的外接球,關(guān)鍵是會找到球心求出半徑,通常結(jié)合勾股定理求.屬于難題.16、【解析】
本題首先應(yīng)用余弦定理,建立關(guān)于的方程,應(yīng)用的關(guān)系、三角形面積公式計算求解,本題屬于常見題目,難度不大,注重了基礎(chǔ)知識、基本方法、數(shù)學(xué)式子的變形及運(yùn)算求解能力的考查.【詳解】由余弦定理得,所以,即解得(舍去)所以,【點(diǎn)睛】本題涉及正數(shù)開平方運(yùn)算,易錯點(diǎn)往往是余弦定理應(yīng)用有誤或是開方導(dǎo)致錯誤.解答此類問題,關(guān)鍵是在明確方法的基礎(chǔ)上,準(zhǔn)確記憶公式,細(xì)心計算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)【解析】
(1)利用同角的平方關(guān)系求cos(α-β)的值;(2)利用求出,再求的值.【詳解】(1)因?yàn)椋詂os(α-β).(2)因?yàn)閏osα=,所以,所以,因?yàn)棣隆?0,),所以.【點(diǎn)睛】本題主要考查同角的三角函數(shù)的關(guān)系求值,考查差角的余弦,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.18、(1)證明見解析;(2);(3)當(dāng)時,沒有零點(diǎn);當(dāng)時,有且僅有一個零點(diǎn)【解析】
(1)求出函數(shù)定義域后直接用定義法即可證明;(2)由題意得,對兩邊同時平方得,求出的取值范圍即可得解;(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類討論即可得解.【詳解】(1)證明:令,解得,故函數(shù)的定義域?yàn)榱?,由,可得,所以,,故即,所以函?shù)在定義域上單調(diào)遞增.(2)由,,故,,當(dāng)時,,有,可得:,故,由,可得,故函數(shù)的值域?yàn)?,?)由(2)知,則,令,則,令,①當(dāng)時,,此時函數(shù)沒有零點(diǎn),故函數(shù)也沒有零點(diǎn);②當(dāng)時,二次函數(shù)的對稱軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個零點(diǎn),又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個零點(diǎn);③當(dāng)時,,二次函數(shù)開口向下,對稱軸,又,,此時函數(shù)沒有零點(diǎn),故函數(shù)也沒有零點(diǎn).綜上,當(dāng)時,函數(shù)沒有零點(diǎn);當(dāng)時,函數(shù)有且僅有一個零點(diǎn).【點(diǎn)睛】本題考查了函數(shù)單調(diào)性的證明、值域的求解和零點(diǎn)問題,考查了轉(zhuǎn)化化歸思想和分類討論思想,屬于中檔題.19、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由題意結(jié)合正弦定理邊化角結(jié)合同角三角函數(shù)基本關(guān)系可得,則B=.(Ⅱ)在△ABC中,由余弦定理可得b=.結(jié)合二倍角公式和兩角差的正弦公式可得詳解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因?yàn)?,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因?yàn)閍<c,故.因此,所以,點(diǎn)睛:在處理三角形中的邊角關(guān)系時,一般全部化為角的關(guān)系,或全部化為邊的關(guān)系.題中若出現(xiàn)邊的一次式一般采用到正弦定理,出現(xiàn)邊的二次式一般采用到余弦定理.應(yīng)用正、余弦定理時,注意公式變式的應(yīng)用.解決三角形問題時,注意角的限制范圍.20、(1)見解析;(2)見解析.【解析】
(1)連接,證明后即得線面平行;(2)可證明平面,然后得面面垂直.【詳解】(1)如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國高溫高壓液流染色機(jī)市場分析及競爭策略研究報告
- 2025至2030年中國金銀紀(jì)念章市場分析及競爭策略研究報告
- 2025至2030年中國調(diào)節(jié)螺栓滑塊市場分析及競爭策略研究報告
- 2025至2030年中國白銅錫退鍍主鹽市場分析及競爭策略研究報告
- 2025至2030年中國涂布機(jī)械換熱器市場分析及競爭策略研究報告
- 2025至2030年中國毛石銅面磚市場分析及競爭策略研究報告
- 2025至2030年中國春繡球茶市場分析及競爭策略研究報告
- 2025至2030年中國手持式折射計市場分析及競爭策略研究報告
- 2025至2030年中國塑膠改質(zhì)劑市場分析及競爭策略研究報告
- 2025至2030年中國雙錐臥式珠磨機(jī)市場分析及競爭策略研究報告
- 2025年廣東省高考地理試卷真題(含答案)
- 2025年湖北省中考英語試題(附答案)
- Unit 1 Happy Holiday 第4課時(Section B 1a-1d) 2025-2026學(xué)年人教版英語八年級下冊
- 2025年連云港市中考語文試卷真題(含標(biāo)準(zhǔn)答案及解析)
- 2025-2030年中國期貨行業(yè)市場深度調(diào)研及競爭格局與投資策略研究報告
- 2025-2030年中國農(nóng)業(yè)科技行業(yè)市場深度調(diào)研及前景趨勢與投資研究報告
- 2025年高考語文真題作文深度分析之全國二卷作文寫作講解
- 湖南省2025年農(nóng)村訂單定向本科醫(yī)學(xué)生培養(yǎng)定向就業(yè)協(xié)議書、健康承諾書、資格審核表
- 中醫(yī)優(yōu)才試題及答案
- 細(xì)胞庫建立管理制度
- AR眼鏡的用戶界面設(shè)計準(zhǔn)則-洞察闡釋
評論
0/150
提交評論