2025屆邵陽市重點中學高一數(shù)學第二學期期末經(jīng)典試題含解析_第1頁
2025屆邵陽市重點中學高一數(shù)學第二學期期末經(jīng)典試題含解析_第2頁
2025屆邵陽市重點中學高一數(shù)學第二學期期末經(jīng)典試題含解析_第3頁
2025屆邵陽市重點中學高一數(shù)學第二學期期末經(jīng)典試題含解析_第4頁
2025屆邵陽市重點中學高一數(shù)學第二學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆邵陽市重點中學高一數(shù)學第二學期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)()的部分圖象如圖所示,其中是圖象的最高點,是圖象與軸的交點,則()A. B. C. D.2.已知銳角△ABC的面積為,BC=4,CA=3,則角C的大小為()A.75° B.60° C.45° D.30°3.已知點,則P在平面直角坐標系中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知向量,,則()A.-1 B.-2 C.1 D.05.下列賦值語句正確的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=6.在中,角A,B,C的對邊分別為a,b,c,若,則角=()A. B. C. D.7.過點的圓的切線方程是()A. B.或C.或 D.或8.從1,2,3,…,9這個9個數(shù)中任取5個不同的數(shù),則這5個數(shù)的中位數(shù)是5的概率等于()A.57 B.59 C.29.若曲線表示橢圓,則的取值范圍是()A. B. C. D.或10.若則所在象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項公式,則____________.12.如圖,在直角梯形中,//是線段上一動點,是線段上一動點,則的最大值為________.13.已知求______________.14.在等差數(shù)列中,若,則的前13項之和等于______.15.設(shè)數(shù)列是等差數(shù)列,,,則此數(shù)列前20項和等于______.16.若,則函數(shù)的值域為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知(1)求的值;(2)求的值.18.如圖,四棱錐,平面ABCD,四邊形ABCD是直角梯形,,,,E為PB中點.(1)求證:平面PCD;(2)求證:.19.已知函數(shù).(1)解關(guān)于的不等式;(2)若關(guān)于的不等式的解集為,求實數(shù)的值.20.如圖,在平面直角坐標系中,點,直線,設(shè)圓的半徑為1,圓心在上.(1)若圓心也在直線上,過點作圓的切線,求切線方程;(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.21.已知函數(shù),.(1)求函數(shù)在上的單調(diào)遞增區(qū)間;(2)在中,內(nèi)角、、所對邊的長分別是,若,,,求的面積的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】函數(shù)的周期為,四分之一周期為,而函數(shù)的最大值為,故,由余弦定理得,故.2、B【解析】試題分析:由三角形的面積公式,得,即,解得,又因為三角形為銳角三角形,所以.考點:三角形的面積公式.3、B【解析】

利用特殊角的三角函數(shù)值的符號得到點的坐標,直接判斷點所在象限即可.【詳解】,.在平面直角坐標系中位于第二象限.故選B.【點睛】本題考查了三角函數(shù)值的符號,考查了三角函數(shù)的誘導公式的應用,是基礎(chǔ)題.4、C【解析】

根據(jù)向量數(shù)量積的坐標運算,得到答案.【詳解】向量,,所以.故選:C.【點睛】本題考查向量數(shù)量積的坐標運算,屬于簡單題.5、B【解析】在程序語句中乘方要用“^”表示,所以A項不正確;乘號“*”不能省略,所以C項不正確;D項中應用SQR(x)表示,所以D項不正確;B選項是將變量A的相反數(shù)賦給變量A,則B項正確.選B.6、A【解析】

由正弦定理可解得,利用大邊對大角可得范圍,從而解得A的值.【詳解】,由正弦定理可得:,,由大邊對大角可得:,解得:.故選A.【點睛】本題主要考查了正弦定理,大邊對大角,正弦函數(shù)的圖象和性質(zhì)等知識的應用,解題時要注意分析角的范圍.7、D【解析】

先由題意得到圓的圓心坐標,與半徑,設(shè)所求直線方程為,根據(jù)直線與圓相切,結(jié)合點到直線距離公式,即可求出結(jié)果.【詳解】因為圓的圓心為,半徑為1,由題意,易知所求切線斜率存在,設(shè)過點與圓相切的直線方程為,即,所以有,整理得,解得,或;因此,所求直線方程分別為:或,整理得或.故選D【點睛】本題主要考查求過圓外一點的切線方程,根據(jù)直線與圓相切,結(jié)合點到直線距離公式即可求解,屬于??碱}型.8、C【解析】試題分析:設(shè)事件為“從1,2,3,…,9這9個數(shù)中5個數(shù)的中位數(shù)是5”,則基本事件總數(shù)為種,事件所包含的基本事件的總數(shù)為:,所以由古典概型的計算公式知,,故應選.考點:1.古典概型;9、D【解析】

根據(jù)橢圓標準方程可得,解不等式組可得結(jié)果.【詳解】曲線表示橢圓,,解得,且,的取值范圍是或,故選D.【點睛】本題主要考查橢圓的標準方程以及不等式的解法,意在考查對基礎(chǔ)知識掌握的熟練程度,屬于簡單題.10、C【解析】

根據(jù)已知不等式可得,;根據(jù)各象限內(nèi)三角函數(shù)的符號可確定角所處的象限.【詳解】由知:,在第三象限故選:【點睛】本題考查三角函數(shù)在各象限內(nèi)的符號,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將代入即可求解【詳解】令,可得.故答案為:【點睛】本題考查求數(shù)列的項,是基礎(chǔ)題12、2【解析】

建立平面直角坐標系,得到相應點的坐標及向量的坐標,把,利用向量的數(shù)量積轉(zhuǎn)化為的函數(shù),即可求解.【詳解】建立如圖所示的平面直角坐標系,因為,,所以,因為,,所以,因為,所以當時,取得最大值,最大值為.故答案為:.【點睛】本題主要考查了平面向量的線性運算,以及向量的數(shù)量積的運算的應用,其中解答中建立平面直角坐標系,結(jié)合向量的線性運算和數(shù)量積的運算,得到的函數(shù)關(guān)系式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.13、23【解析】

直接利用數(shù)量積的坐標表示求解.【詳解】由題得.故答案為23【點睛】本題主要考查平面向量的數(shù)量積的計算,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.14、【解析】

根據(jù)題意,以及等差數(shù)列的性質(zhì),先得到,再由等差數(shù)列的求和公式,即可求出結(jié)果.【詳解】因為是等差數(shù)列,,所以,即,記前項和為,則.故答案為:【點睛】本題主要考查等差數(shù)列前項和的基本量的運算,熟記等差數(shù)列的性質(zhì)以及求和公式即可,屬于基礎(chǔ)題型.15、180【解析】

根據(jù)條件解得公差與首項,再代入等差數(shù)列求和公式得結(jié)果【詳解】因為,,所以,【點睛】本題考查等差數(shù)列通項公式以及求和公式,考查基本分析求解能力,屬基礎(chǔ)題16、【解析】

令,結(jié)合可得,本題轉(zhuǎn)化為求二次函數(shù)在的值域,求解即可.【詳解】,.令,,則,由二次函數(shù)的性質(zhì)可知,當時,;當時,.故所求值域為.【點睛】本題考查了函數(shù)的值域,利用換元法是解決本題的一個方法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)20,(2)【解析】

(1)先利用同角三角函數(shù)的基本關(guān)系求得cos和tan的值,進而利用二倍角公式把sin2展開,把sin和cos的值代入即可.(2)先利用誘導公式使=tan(﹣),再利用正切的兩角和公式展開后,把tanα的值代入即可求得答案.【詳解】(1)由,得,所以=(2)∵,∴【點睛】本題主要考查了三角函數(shù)的化簡求值的問題.要求學生能靈活運用三角函數(shù)的基本公式.18、(1)證明見詳解;(2)證明見詳解【解析】

(1)取的中點,證出,再利用線面平行的判定定理即可證出.(2)利用線面垂直的判定定理可證出平面,再根據(jù)線面垂直的定義即可證出.【詳解】如圖,取的中點,連接,E為PB中點,,且,又,,,,為平行四邊形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因為,,所以,,平面,又平面,.【點睛】本題考查了線面平行的判定定理、線面垂直的判定定理,要證線面平行,需先證線線平行;要證異面直線垂直,可先證線面垂直,此題屬于基礎(chǔ)題.19、(1)①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)【解析】

(1)不等式,可化為,分三種情況討論,分別利用一元二次不等式的解法求解即可;(2)不等可化為,根據(jù)1和4是方程的兩根,利用韋達定理列方程求解即可.【詳解】(1)不等式,可化為:.①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)不等可化為:.由不等式的解集為可知,1和4是方程的兩根.故有,解得.由時方程為的根為1或4,則實數(shù)的值為1.【點睛】本題主要考查一元二次不等式的解法以及分類討論思想的應用,屬于中檔題..分類討論思想的常見類型

,⑴問題中的變量或含有需討論的參數(shù)的,要進行分類討論的;

⑵問題中的條件是分類給出的;

⑶解題過程不能統(tǒng)一敘述,必須分類討論的;

⑷涉及幾何問題時,由幾何元素的形狀、位置的變化需要分類討論的.20、(1)或;(2).【解析】

(1)兩直線方程聯(lián)立可解得圓心坐標,又知圓的半徑為,可得圓的方程,根據(jù)點到直線距離公式,列方程可求得直線斜率,進而得切線方程;(2)根據(jù)圓的圓心在直線:上可設(shè)圓的方程為,由,可得的軌跡方程為,若圓上存在點,使,只需兩圓有公共點即可.【詳解】(1)由得圓心,∵圓的半徑為1,∴圓的方程為:,顯然切線的斜率一定存在,設(shè)所求圓的切線方程為,即.∴,∴,∴或.∴所求圓的切線方程為或.(2)∵圓的圓心在直線:上,所以,設(shè)圓心為,則圓的方程為.又∵,∴設(shè)為,則,整理得,設(shè)為圓.所以點應該既在圓上又在圓上,即圓和圓有交點,∴,由,得,由,得.綜上所述,的取值范圍為.考點:1、圓的標準方程及切線的方程;2、圓與圓的位置關(guān)系及轉(zhuǎn)化與劃歸思想的應用.【方法點睛】本題主要考查圓的標準方程及切線的方程、圓與圓的位置關(guān)系及轉(zhuǎn)化與劃歸思想的應用.屬于難題.轉(zhuǎn)化與劃歸思想是解決高中數(shù)學問題的一種重要思想方法,是中學數(shù)學四種重要的數(shù)學思想之一,尤其在解決知識點較多以及知識跨度較大的問題發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關(guān)鍵是將題設(shè)條件研究透,這樣才能快速找準突破點.以便將問題轉(zhuǎn)化為我們所熟悉的知識領(lǐng)域,進而順利解答,希望同學們能夠熟練掌握并應用于解題當中.本題(2)巧妙地將圓上存在點,使問題轉(zhuǎn)化為,兩圓有公共點問題是解決問題的關(guān)鍵所在.21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論