




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
杜郎口中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列中,,.若公差為某一自然數(shù),則n的所有可能取值為()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,702.如圖,一個邊長為的正方形里有一個月牙形的圖案,為了估算這個月牙形圖案的面積,向這個正方形里隨機(jī)投入了粒芝麻,經(jīng)過統(tǒng)計,落在月牙形圖案內(nèi)的芝麻有粒,則這個月牙圖案的面積約為()A. B. C. D.3.如圖,網(wǎng)格紙上正方形小格邊長為,圖中粗線畫的是某幾何體的三視圖,則該幾何體的表面積等于()A.B.C.D.4.直線與圓相交于兩點,則弦長()A. B.C. D.5.若、為異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交6.化簡的結(jié)果是()A. B. C. D.7.在平面直角坐標(biāo)系中,角的頂點與原點重合,它的始邊與軸的非負(fù)半軸重合,終邊交單位圓于點,則的值為()A. B. C. D.8.設(shè),則()A. B. C. D.9.已知等差數(shù)列{}的前n項和為,且S8=92,a5=13,則a4=A.16 B.13 C.12 D.1010.某學(xué)校有教師200人,男學(xué)生1200人,女學(xué)生1000人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,若女學(xué)生一共抽取了80人,則n的值為()A.193 B.192 C.191 D.190二、填空題:本大題共6小題,每小題5分,共30分。11.已知中,的對邊分別為,若,則的周長的取值范圍是__________.12.函數(shù),的值域為________13.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.14.某公司當(dāng)月購進(jìn)、、三種產(chǎn)品,數(shù)量分別為、、,現(xiàn)用分層抽樣的方法從、、三種產(chǎn)品中抽出樣本容量為的樣本,若樣本中型產(chǎn)品有件,則的值為_______.15.若等比數(shù)列的各項均為正數(shù),且,則等于__________.16.三棱錐的各頂點都在球的球面上,,平面,,,球的表面積為,則的表面積為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線經(jīng)過兩條直線:和:的交點,直線:;(1)若,求的直線方程;(2)若,求的直線方程.18.已知定義在上的函數(shù)的圖象如圖所示(1)求函數(shù)的解析式;(2)寫出函數(shù)的單調(diào)遞增區(qū)間(3)設(shè)不相等的實數(shù),,且,求的值.19.已知數(shù)列的前項和,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.20.已知平面向量(1)若,求;(2)若,求與夾角的余弦值.21.某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2:表1:生產(chǎn)能力分組人數(shù)48x53表2:生產(chǎn)能力分組人數(shù)6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?。浚ú挥糜嬎?,可通過觀察直方圖直接回答結(jié)論)②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)圖1A類工人生產(chǎn)能力的頻率分布直方圖圖2B類工人生產(chǎn)能力的頻率分布直方圖
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由等差數(shù)列的通項公式得,公差,所以,可能為,的所有可能取值為選.考點:1.等差數(shù)列及其通項公式;2.數(shù)的整除性.2、A【解析】
根據(jù)幾何概型直接進(jìn)行計算即可.【詳解】月牙形圖案的面積約為:本題正確選項:【點睛】本題考查幾何概型的應(yīng)用,屬于基礎(chǔ)題.3、C【解析】
由三視圖可知該幾何體是一個四棱錐,作出圖形即可求出表面積?!驹斀狻吭搸缀误w為四棱錐,如圖..選C.【點睛】本題考查了三視圖,考查了四棱錐的表面積,考查了學(xué)生的空間想象能力與計算能力,屬于基礎(chǔ)題。4、D【解析】試題分析:圓心到直線的距離為,所以弦長為.考點:直線與圓的位置關(guān)系.5、D【解析】解:因為為異面直線,直線,則與的位置關(guān)系是異面或相交,選D6、A【解析】
根據(jù)平面向量加法及數(shù)乘的幾何意義,即可求解,得到答案.【詳解】根據(jù)平面向量加法及數(shù)乘的幾何意義,可得,故選A.【點睛】本題主要考查了平面向量的加法法則的應(yīng)用,其中解答中熟記平面向量的加法法則是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)三角函數(shù)的定義,即可求解,得到答案.【詳解】由題意,角的頂點與原點重合,它的始邊與軸的非負(fù)半軸重合,終邊交單位圓于點,根據(jù)三角函數(shù)的定義可得.故選:C.【點睛】本題主要考查了三角的函數(shù)的定義,其中解答中熟記三角函數(shù)的定義是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.8、C【解析】
首先化簡,可得到大小關(guān)系,再根據(jù),即可得到的大小關(guān)系.【詳解】,,.所以.故選:C【點睛】本題主要考查指數(shù),對數(shù)的比較大小,熟練掌握指數(shù)和對數(shù)函數(shù)的性質(zhì)為解題的關(guān)鍵,屬于簡單題.9、D【解析】
利用等差數(shù)列前項和公式化簡已知條件,并用等差數(shù)列的性質(zhì)轉(zhuǎn)化為的形式,由此求得的值.【詳解】依題意,,解得,故選D.【點睛】本小題主要考查等差數(shù)列前項和公式,以及等差數(shù)列的性質(zhì),解答題目過程中要注意觀察已知條件的下標(biāo).屬于基礎(chǔ)題.10、B【解析】
按分層抽樣的定義,按比例計算.【詳解】由題意,解得.故選:B.【點睛】本題考查分層抽樣,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】中,由余弦定理可得,∵,∴,化簡可得.∵,∴,解得(當(dāng)且僅當(dāng)時,取等號).故.再由任意兩邊之和大于第三邊可得,故有,故的周長的取值范圍是,故答案為.點睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意兩邊之和大于第三邊求得,由此求得△ABC的周長的取值范圍.12、【解析】
先求的值域,再求的值域即可.【詳解】因為,故,故.故答案為:【點睛】本題主要考查了余弦函數(shù)的值域與反三角函數(shù)的值域等,屬于基礎(chǔ)題型.13、【解析】
代入分式利用同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式化簡即可.【詳解】.故答案為:2【點睛】本題考查同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.14、.【解析】
利用分層抽樣每層抽樣比和總體的抽樣比相等,列等式求出的值.【詳解】在分層抽樣中,每層抽樣比和總體的抽樣比相等,則有,解得,故答案為:.【點睛】本題考查分層抽樣中的相關(guān)計算,解題時要充分利用各層抽樣比與總體抽樣比相等這一條件列等式求解,考查運算求解能力,屬于基礎(chǔ)題.15、50【解析】由題意可得,=,填50.16、【解析】
根據(jù)題意可證得,而,所以球心為的中點.由球的表面積為,即可求出,繼而得出的值,求出三棱錐的表面積.【詳解】如圖所示:∵,平面,∴,又,故球心為的中點.∵球的表面積為,∴,即有.∴,.∴,,,.故的表面積為.故答案為:.【點睛】本題主要考查三棱錐的表面積的求法,球的表面積公式的應(yīng)用,意在考查學(xué)生的直觀想象能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)先求出與的交點,再利用兩直線平行斜率相等求直線l(2)利用兩直線垂直斜率乘積等于-1求直線l【詳解】(1)由,得,∴與的交點為.設(shè)與直線平行的直線為,則,∴.∴所求直線方程為.(2)設(shè)與直線垂直的直線為,則,解得.∴所求直線方程為.【點睛】兩直線平行斜率相等,兩直線垂直斜率乘積等于-1.18、(1);(2);(3);【解析】
(1)根據(jù)函數(shù)的最值可得,周期可得,代入最高點的坐標(biāo)可得,從而可得解析式;(2)利用正弦函數(shù)的遞增區(qū)間可解得;(3)利用在內(nèi)的解就是和,即可得到結(jié)果.【詳解】(1)由函數(shù)的圖象可得,又因為函數(shù)的周期,所以,因為函數(shù)的圖象經(jīng)過點,即,所以,即,所以.(2)由,可得,可得函數(shù)的單調(diào)遞增區(qū)間為:,(3)因為,所以,又因為可得,所以或,解得或,、因為且,,所以.【點睛】本題考查了由圖象求解析式,考查了正弦函數(shù)的遞增區(qū)間,考查了由函數(shù)值求角,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】
(1)本題可令求出的值,然后令求出,即可求出數(shù)列的通項公式;(2)首先可令,然后根據(jù)錯位相減法即可求出數(shù)列的前項和?!驹斀狻?1)當(dāng),,得.當(dāng)時,,,兩式相減,得,化簡得,所以數(shù)列是首項為、公比為的等比數(shù)列,所以。(2)由(1)可知,令,則①,兩邊同乘以公比,得到②,由①②得:所以。【點睛】本題主要考查了數(shù)列通項的求法以及數(shù)列前項和的方法,求數(shù)列通項常用的方法有:累加法、累乘法、定義法、配湊法等;求數(shù)列前項和常用的方法有:錯位相減法、裂項相消法、公式法、分組求和法等,屬于中等題。20、(1)(2)【解析】
(1)由題可得,解出,,進(jìn)而得出答案.(2)由題可得,,再由計算得出答案,【詳解】因為,所以,即解得所以(2)若,則所以,,,所以【點睛】本題主要考查的向量的模以及數(shù)量積,屬于簡單題.21、(1)25,75(2)①5,15,直方圖見解析,B類②123,133.8,131.1【解析】
(1)先計算抽樣比為,進(jìn)而可得各層抽取人數(shù)(2)①類、類工人人數(shù)之比為,按此比例確定兩類工人需抽取的人數(shù),再算出和即可.畫出頻率分布直方圖,從直方圖可以判斷:類工人中個體間的差異程度更?、谌∶總€小矩形的橫坐標(biāo)的中點乘以對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上海市閔行區(qū)高三語文二模試卷(暫無答案)
- 節(jié)能知識培訓(xùn)課件
- 生物化學(xué)三試題及答案
- 咖啡師技術(shù)認(rèn)證要求試題及答案
- 教師說課之教學(xué)分析
- 肥料及基礎(chǔ)知識培訓(xùn)課件
- 職業(yè)安全知識培訓(xùn)課件
- 國家電網(wǎng)科研成果試題及答案
- 美甲基礎(chǔ)知識培訓(xùn)課件
- 網(wǎng)絡(luò)新系統(tǒng)知識培訓(xùn)課件
- 泌尿外科靜脈血栓栓塞癥的風(fēng)險評估與預(yù)防
- 食品采購?fù)稑?biāo)服務(wù)方案
- 2024年K12課外輔導(dǎo)市場洞察報告
- 設(shè)備搬運合同的模板
- 2024年浪潮入職測評題和答案
- 有機(jī)肥料整體供貨方案及保證措施
- 跨國公司的國際營銷策略淺析-以聯(lián)合利華為例
- 全媒體運營師-國家職業(yè)標(biāo)準(zhǔn)(2023年版)
- 針灸治療呃逆
- GLB-2防孤島保護(hù)裝置試驗報告
- 2024年中考英語復(fù)習(xí):閱讀七選五 專項練習(xí)題匯編(含答案解析)
評論
0/150
提交評論