版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
四川省瀘州市市合江縣合江天立學(xué)校高2025屆高一下數(shù)學(xué)期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是不同的直線,是不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則2.設(shè)函數(shù)是上的偶函數(shù),且在上單調(diào)遞減.若,,,則,,的大小關(guān)系為()A. B. C. D.3.等差數(shù)列中,則()A.8 B.6 C.4 D.34.正四棱柱的高為3cm,體對角線長為cm,則正四棱柱的側(cè)面積為()A.10 B.24 C.36 D.405.設(shè)公差為-2的等差數(shù)列,如果,那么等于()A.-182 B.-78 C.-148 D.-826.設(shè)是異面直線,則以下四個命題:①存在分別經(jīng)過直線和的兩個互相垂直的平面;②存在分別經(jīng)過直線和的兩個平行平面;③經(jīng)過直線有且只有一個平面垂直于直線;④經(jīng)過直線有且只有一個平面平行于直線,其中正確的個數(shù)有()A.1 B.2 C.3 D.47.若a,b,c∈R,且滿足a>b>c,則下列不等式成立的是()A.1a<C.a(chǎn)c28.已知函數(shù)圖象的一條對稱軸是,則函數(shù)的最大值為()A.5 B.3 C. D.9.古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為A.2031 B.35 C.810.設(shè)函數(shù),則是()A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,已知圓:,圓:,動點在直線:上(),過分別作圓,的切線,切點分別為,,若滿足的點有且只有一個,則實數(shù)的值為______.12.一個扇形的圓心角是2弧度,半徑是4,則此扇形的面積是______.13.若的面積,則=14.某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學(xué)生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為____________.15.已知兩個數(shù)k+9和6-k的等比中項是2k,則k=________.16.在三棱錐中,平面,是邊長為2的正三角形,,則三棱錐的外接球的表面積為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,且(1)求的值;(2)求的值.18.四棱柱中,底面為正方形,,為中點,且.(1)證明;(2)求點到平面的距離.19.已知的頂點,邊上的中線所在直線方程為,邊上的高,所在直線方程為.(1)求頂點的坐標(biāo);(2)求直線的方程.20.已知,.(1)求的值;(2)求的值.21.某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示.組號
分組
回答正確
的人數(shù)
回答正確的人數(shù)
占本組的概率
第1組
5
0.5
第2組
0.9
第3組
27
第4組
0.36
第5組
3
(Ⅰ)分別求出的值;(Ⅱ)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由線面平行的判定定理即可判斷A;由線面垂直的判定定理可判斷B;由面面垂直的性質(zhì)可判斷C;由空間中垂直于同一條直線的兩平面平行可判斷D.【詳解】對于A選項,加上條件“”結(jié)論才成立;對于B選項,加上條件“直線和相交”結(jié)論才成立;對于C選項,加上條件“”結(jié)論才成立.故選:D【點睛】本題考查空間直線與平面的位置關(guān)系,涉及線面平行的判定、線面垂直的判定、面面垂直的性質(zhì),屬于基礎(chǔ)題.2、B【解析】
根據(jù)偶函數(shù)的定義可變形,再直接比較的大小關(guān)系,即可利用函數(shù)的單調(diào)性得出,,的大小關(guān)系.【詳解】因為函數(shù)是上的偶函數(shù),所以,而,函數(shù)在上單調(diào)遞減,所以.故選:B.【點睛】本題主要考查函數(shù)的性質(zhì)的應(yīng)用,涉及奇偶性,指數(shù)函數(shù),對數(shù)函數(shù)的單調(diào)性,以及對數(shù)的運算性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】
設(shè)等差數(shù)列的公差為,根據(jù)題意,求解,進而可求得,即可得到答案.【詳解】由題意,設(shè)等差數(shù)列的公差為,則,即,又由,故選D.【點睛】本題主要考查了等差數(shù)列的通項公式的應(yīng)用,其中解答中設(shè)等差數(shù)列的公差為,利用等差數(shù)列的通項公式化簡求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、B【解析】
設(shè)正四棱柱,設(shè)底面邊長為,由正四棱柱體對角線的平方等于從同一頂點出發(fā)的三條棱的平方和,可得關(guān)于的方程.【詳解】如圖,正四棱柱,設(shè)底面邊長為,則,解得:,所以正四棱柱的側(cè)面積.【點睛】本題考查正棱柱的概念,即底面為正方形且側(cè)棱垂直于底面的幾何體,考查幾何體的側(cè)面積計算.5、D【解析】
根據(jù)利用等差數(shù)列通項公式及性質(zhì)求得答案.【詳解】∵{an}是公差為﹣2的等差數(shù)列,∴a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50﹣132=﹣1.故選D.【點睛】本題主要考查了等差數(shù)列的通項公式及性質(zhì)的應(yīng)用,考查了運算能力,屬基礎(chǔ)題.6、C【解析】對于①:可以在兩個互相垂直的平面中,分別畫一條直線,當(dāng)這兩條直線異面時,可判斷①正確對于②:可在兩個平行平面中,分別畫一條直線,當(dāng)這兩條直線異面時,可判斷②正確對于③:當(dāng)這兩條直線不是異面垂直時,不存在這樣的平面滿足題意,可判斷③錯誤對于④:假設(shè)過直線a有兩個平面α、β與直線b平行,則面α、β相交于直線a,過直線b做一平面γ與面α、β相交于兩條直線m、n,則直線m、n相交于一點,且都與直線b平行,這與“過直線外一點有且只有一條直線與已知直線平行”矛盾,所以假設(shè)不成立,所以④正確故選:C.7、C【解析】
通過反例可依次排除A,B,D選項;根據(jù)不等式的性質(zhì)可判斷出C正確.【詳解】A選項:若a=1,b=-2,則1a>1B選項:若a=1,b=12,則1aC選項:c2+1>0又a>b∴ac2D選項:當(dāng)c=0時,ac=bc本題正確選項:C【點睛】本題考查不等式性質(zhì)的應(yīng)用,解決此類問題通常采用排除法,利用反例來排除錯誤選項即可,屬于基礎(chǔ)題.8、B【解析】
函數(shù)圖象的一條對稱軸是,可得,解得.可得函數(shù),再利用輔助角公式、倍角公式、三角函數(shù)的有界性即可得出.【詳解】函數(shù)圖象的一條對稱軸是,,解得.則函數(shù)當(dāng)時取等號.函數(shù)的最大值為1.故選.【點睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用以及利用二倍角公式和輔助角公式進行三角恒等變換.9、A【解析】
由題意可得該女子每天織布的尺數(shù)構(gòu)成一個等比數(shù)列,且數(shù)列的公比為2,由題意求出數(shù)列的首項后可得第3天織布的尺數(shù).【詳解】由題意可得該女子每天織布的尺數(shù)構(gòu)成一個等比數(shù)列,且數(shù)列的公比為2,前5項的和為5,設(shè)首項為a1,前n項和為S則由題意得S5∴a1∴a3即該女子第3天所織布的尺數(shù)為2031故選A.【點睛】本題以中國古文化為載體考查等比數(shù)列的基本運算,解題的關(guān)鍵是正確理解題意,將問題轉(zhuǎn)化成等比數(shù)列的知識求解,考查閱讀理解和轉(zhuǎn)化、計算能力.10、D【解析】函數(shù),化簡可得f(x)=–cos2x,∴f(x)是偶函數(shù).最小正周期T==π,∴f(x)最小正周期為π的偶函數(shù).故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
根據(jù)圓的切線的性質(zhì)和三角形全等,得到,求得點的軌跡方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求解.【詳解】由題意得:,,設(shè),如下圖所示∵PA、PB分別是圓O,O1的切線,∴∠PBO1=∠PAO=90°,又∵PB=2PA,BO1=2AO,∴△PBO1∽△PAO,∴,∴,∴,整理得,∴點P(x,y)的軌跡是以為圓心、半徑等于的圓,∵動點P在直線:上(),滿足PB=2PA的點P有且只有一個,∴該直線l與圓相切,∴圓心到直線l的距離d滿足,即,解得或,又因為,所以.【點睛】本題主要考查了圓的切線的性質(zhì),以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中根據(jù)圓的切下的性質(zhì)和三角形全等求得點的軌跡方程,再根據(jù)直線與圓相切,列出方程求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.12、16【解析】
利用公式直接計算即可.【詳解】扇形的面積.故答案為:.【點睛】本題考查扇形的面積,注意扇形的面積公式有兩個:,其中為扇形的半徑,為圓心角的弧度數(shù),為扇形的弧長,可根據(jù)題設(shè)條件合理選擇一個,本題屬于基礎(chǔ)題.13、【解析】試題分析:,.考點:三角形的面積公式及余弦定理的變形.點評:由三角形的面積公式,再根據(jù),直接可求出tanC的值,從而得到C.14、160【解析】
∵某個年級共有980人,要從中抽取280人,∴抽取比例為280980∴此樣本中男生人數(shù)為27故答案為160.考點:本題考查了分層抽樣的應(yīng)用點評:掌握分層抽樣的概念是解決此類問題的關(guān)鍵,屬基礎(chǔ)題15、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.16、【解析】
設(shè)三棱錐的外接球半徑為,利用正弦定理求出的外接圓半徑,再利用公式可計算出外接球半徑,最后利用球體的表面積公式可計算出結(jié)果.【詳解】由正弦定理可得,的外接圓直徑為,,設(shè)三棱錐的外接球半徑為,平面,,因此,三棱錐的外接球表面積為,故答案為.【點睛】本題考查多面體的外接球,考查球體表面積的計算,在求解直棱柱后直棱錐的外接球,若底面外接圓半徑為,高為,可利用公式得出外接球的半徑,解題時要熟悉這些結(jié)論的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由條件先求得然后再用二倍角公式求;(2)利用角的變換求出,在根據(jù)的范圍確定的值.【詳解】(1)因為,所以,所以,所以;(2)因為,所以因為,所以,由(1)得,所以=,因為,所以.【點睛】根據(jù)已知條件求角的步驟:(1)求角的某一個三角函數(shù)值;(2)確定角的范圍;(3)根據(jù)角的范圍寫出所求的角.在選取函數(shù)時,遵照以下原則:①已知正切函數(shù)值,選正切函數(shù);②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是,選余弦較好;若角的范圍為,選正弦較好.18、(1)見解析;(2).【解析】試題分析:(1)證明線線垂直,一般利用線面垂直性質(zhì)定理,即利用線面垂直進行證明,而證明線面垂直,則利用線面垂直判定定理,即從已知的線線垂直出發(fā)給予證明,本題利用平幾知識,如等邊三角形性質(zhì)、正方形性質(zhì)得線線垂直,(2)求點到直線距離,一般方法利用等體積法轉(zhuǎn)化為求高.試題解析:(1)等邊中,為中點,又,且在正方形中,(2)中,,由(1)知,等體積法可得點到平面的距離為.19、(1);(2)【解析】
(1)根據(jù)邊上的高所在直線方程求出的斜率,由點斜式可得的方程,與所在直線方程聯(lián)立即可得結(jié)果;(2)設(shè)則,代入中,可求得點坐標(biāo),利用兩點式可得結(jié)果.【詳解】(1)由邊上的高所在直線方程為得,所以直線AB所在的直線方程為,即聯(lián)立解得所以頂點的坐標(biāo)為(4,3)(2)因為在直線上,所以設(shè)則,代入中,得所以則直線的方程為,即【點睛】本題主要考查直線的方程,直線方程主要有五種形式,每種形式的直線方程都有其局限性,斜截式與點斜式要求直線斜率存在,所以用這兩種形式設(shè)直線方程時要注意討論斜是否存在;截距式要注意討論截距是否為零;兩點式要注意討論直線是否與坐標(biāo)軸平行;求直線方程的最終結(jié)果往往需要化為一般式.20、(1);(2).【解析】
(1)利用同角三角函數(shù)的平方關(guān)系可求出的值,然后再利用同角三角函數(shù)的商數(shù)關(guān)系可求出的值;(2)在分式分子和分母中同時除以,將所求分式轉(zhuǎn)化為含的分式求解,代值計算即可.【詳解】(1),,因此,;(2)原式.【點睛】本題考查同角三角函數(shù)的商數(shù)關(guān)系求值,同時也考查了弦化切思想的應(yīng)用,解題時要熟悉弦化切所適用的基本情形,考查計算能力,屬于基礎(chǔ)題.21、(Ⅰ);(Ⅱ)第2組抽人;第3組抽3人;第4組抽1人;(III).【解析】
(Ⅰ)由頻率表中第1組數(shù)據(jù)可知,第1組總?cè)藬?shù)為,再結(jié)合頻率分布直方圖可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版承包工地食堂餐廚垃圾處理合同模板3篇
- 2024蔬菜加工產(chǎn)品銷售合作協(xié)議3篇
- 2024年股權(quán)轉(zhuǎn)讓合同標(biāo)的及屬性詳細(xì)描述
- 2024年版物業(yè)托管服務(wù)協(xié)議版B版
- 二零二五版離婚協(xié)議書起草與審核合同2篇
- 2024版房屋贈與合同協(xié)議書大全
- 天津中德應(yīng)用技術(shù)大學(xué)《教育技術(shù)與傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版家政服務(wù)+家庭健康促進合同3篇
- 太原幼兒師范高等??茖W(xué)?!段麽t(yī)外科學(xué)醫(yī)學(xué)免疫學(xué)與病原生物學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年特殊用途變壓器安裝與性能測試合同2篇
- 《浸沒式液冷冷卻液選型要求》
- 迪士尼樂園總體規(guī)劃
- 2024年江蘇省蘇州市中考數(shù)學(xué)試卷含答案
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- 介紹蝴蝶蘭課件
- 大學(xué)計算機基礎(chǔ)(第2版) 課件 第1章 計算機概述
- 數(shù)字化年終述職報告
- 2024年職工普法教育宣講培訓(xùn)課件
- 安保服務(wù)評分標(biāo)準(zhǔn)
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標(biāo)準(zhǔn)
- (人教PEP2024版)英語一年級上冊Unit 1 教學(xué)課件(新教材)
評論
0/150
提交評論