上海二中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第1頁
上海二中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第2頁
上海二中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第3頁
上海二中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第4頁
上海二中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

上海二中2025屆數(shù)學(xué)高一下期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列不等式中正確的是()A.若,,則B.若,則C.若,則D.若,則2.正四棱柱的高為3cm,體對角線長為cm,則正四棱柱的側(cè)面積為()A.10 B.24 C.36 D.403.如圖,在等腰梯形中,,于點,則()A. B.C. D.4.已知數(shù)列an的前4項為:l,-12,13,A.a(chǎn)n=C.a(chǎn)n=5.設(shè)為中的三邊長,且,則的取值范圍是()A. B.C. D.6.如圖是一圓錐的三視圖,正視圖和側(cè)視圖都是頂角為120°的等腰三角形,若過該圓錐頂點S的截面三角形面積的最大值為2,則該圓錐的側(cè)面積為A. B. C. D.47.函數(shù)f(x)=sinA.1 B.2 C.3 D.28.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)9.若實數(shù)滿足,則的大小關(guān)系是:A. B. C. D.10.若變量,滿足條件,則的最大值是()A.-4 B.-2 C.0 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0的公共弦的長為___.12.設(shè)的內(nèi)角,,所對的邊分別為,,.已知,,如果解此三角形有且只有兩個解,則的取值范圍是_____.13.正三棱錐的底面邊長為2,側(cè)面均為直角三角形,則此三棱錐的體積為.14.若,,則___________.15.已知等比數(shù)列的公比為,它的前項積為,且滿足,,,給出以下四個命題:①;②;③為的最大值;④使成立的最大的正整數(shù)為4031;則其中正確命題的序號為________16.在賽季季后賽中,當(dāng)一個球隊進行完場比賽被淘汰后,某個籃球愛好者對該隊的7場比賽得分情況進行統(tǒng)計,如表:場次得分104為了對這個隊的情況進行分析,此人設(shè)計計算的算法流程圖如圖所示(其中是這場比賽的平均得分),輸出的的值______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示.組號

分組

回答正確

的人數(shù)

回答正確的人數(shù)

占本組的概率

第1組

5

0.5

第2組

0.9

第3組

27

第4組

0.36

第5組

3

(Ⅰ)分別求出的值;(Ⅱ)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.18.若不等式的解集為.(1)求證:;(2)求不等式的解集.19.已知分別為內(nèi)角的對邊試從下列①②條件中任選一個作為已知條件并完成下列(1)(2)兩問的解答①;②.(1)求角(2)若,,求的面積.20.求下列各式的值:(1)求的值;(2)已知,,且,,求的值.21.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點.(1)證明:;(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)不等式的性質(zhì)逐一判斷即可得解.【詳解】解:對于選項A,若,,不妨取,則,即A錯誤;對于選項B,若,當(dāng)時,則,即B錯誤;對于選項C,若,不妨取,則,即C錯誤;對于選項D,若,則,即,,即D正確,故選:D.【點睛】本題考查了不等式的性質(zhì),屬基礎(chǔ)題.2、B【解析】

設(shè)正四棱柱,設(shè)底面邊長為,由正四棱柱體對角線的平方等于從同一頂點出發(fā)的三條棱的平方和,可得關(guān)于的方程.【詳解】如圖,正四棱柱,設(shè)底面邊長為,則,解得:,所以正四棱柱的側(cè)面積.【點睛】本題考查正棱柱的概念,即底面為正方形且側(cè)棱垂直于底面的幾何體,考查幾何體的側(cè)面積計算.3、A【解析】

根據(jù)等腰三角形的性質(zhì)可得是的中點,由平面向量的加法運算法則結(jié)合向量平行的性質(zhì)可得結(jié)果.【詳解】因為,所以是的中點,可得,故選.【點睛】本題主要考查向量的幾何運算以及向量平行的性質(zhì),屬于簡單題.向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標(biāo)運算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標(biāo)運算比較簡單)4、D【解析】

分母與項數(shù)一樣,分子都是1,正負(fù)號相間出現(xiàn),依此可得通項公式【詳解】正負(fù)相間用(-1)n-1表示,∴a故選D.【點睛】本題考查數(shù)列的通項公式,屬于基礎(chǔ)題,關(guān)鍵是尋找規(guī)律,尋找與項數(shù)有關(guān)的規(guī)律.5、B【解析】

由,則,再根據(jù)三角形邊長可以證得,再利用不等式和已知可得,進而得到,再利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,求得函數(shù)的最小值,即可求解.【詳解】由題意,記,又由,則,又為△ABC的三邊長,所以,所以,另一方面,由于,所以,又,所以,不妨設(shè),且為的三邊長,所以.令,則,當(dāng)時,可得,從而,當(dāng)且僅當(dāng)時取等號.故選B.【點睛】本題主要考查了解三角形,綜合了函數(shù)和不等式的綜合應(yīng)用,以及基本不等式和導(dǎo)數(shù)的應(yīng)用,屬于綜合性較強的題,難度較大,著重考查了分析問題和解答問題的能力,屬于難題.6、B【解析】

過該圓錐頂點S的截面三角形面積最大是直角三角形,根據(jù)面積為2求出圓錐的母線長,再根據(jù)正視圖求圓錐底面圓的半徑,最后根據(jù)扇形面積公式求圓錐的側(cè)面積.【詳解】過該圓錐頂點S的截面三角形面積最直角三角形,設(shè)圓錐的母線長和底面圓的半徑分別為,則,即,又,所以圓錐的側(cè)面積;故選B.【點睛】本題考查三視圖及圓錐有關(guān)計算,此題主要難點在于判斷何時截面三角形面積最大,要結(jié)合三角形的面積公式,當(dāng),即截面是等腰直角三角時面積最大.7、A【解析】

對sin(x+π3【詳解】∵f(x)=sin∴f(x)【點睛】考查三角恒等變換、輔助角公式及余弦函數(shù)的最值.8、C【解析】

根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎(chǔ)題.9、D【解析】分析:先解不等式,再根據(jù)不等式性質(zhì)確定的大小關(guān)系.詳解:因為,所以,所以選D.點睛:本題考查一元二次不等式解法以及不等式性質(zhì),考查基本求解能力與運用性質(zhì)解決問題能力.10、D【解析】

由約束條件畫出可行域,將問題轉(zhuǎn)化為在軸截距最小,通過平移可知當(dāng)過時,取最大值,代入可得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:當(dāng)取最大值時,在軸截距最小平移直線可知,當(dāng)過時,在軸截距最小又本題正確選項:【點睛】本題考查線性規(guī)劃中的最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過直線平移來進行求解,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

兩圓方程相減求出公共弦所在直線的解析式,求出第一個圓心到直線的距離,再由第一個圓的半徑,利用勾股定理及垂徑定理即可求出公共弦長.【詳解】圓與圓的方程相減得:,由圓的圓心,半徑r為2,且圓心到直線的距離,則公共弦長為.故答案為.【點睛】此題考查了直線與圓相交的性質(zhì),求出公共弦所在的直線方程是解本題的關(guān)鍵.12、【解析】

由余弦定理寫出c與x的等式,再由有兩個正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個解,記為則:【點睛】本題主要考查余弦定理以及韋達(dá)定理,屬于中檔題.13、【解析】

由題意可得:該三棱錐的三條側(cè)棱兩兩垂直,長都為,所以三棱錐的體積.考點:三棱錐的體積公式.14、【解析】

將等式和等式都平方,再將所得兩個等式相加,并利用兩角和的正弦公式可求出的值.【詳解】若,,將上述兩等式平方得,①,②,①+②可得,求得,故答案為.【點睛】本題考查利用兩角和的正弦公式求值,解題的關(guān)鍵就是將等式進行平方,結(jié)合等式結(jié)構(gòu)進行變形計算,考查運算求解能力,屬于中等題.15、②③【解析】

利用等比數(shù)列的性質(zhì),可得,得出,進而判斷②③④,即可得到答案.【詳解】①中,由等比數(shù)列的公比為,且滿足,,,可得,所以,且所以是錯誤的;②中,由等比數(shù)列的性質(zhì),可得,所以是正確的;③中,由,且,,所以前項之積的最大值為,所以是正確的;④中,,所以正確.綜上可得,正確命題的序號為②③.故答案為:②③.【點睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟記等比數(shù)列的性質(zhì),合理推算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.16、【解析】

根據(jù)題意,模擬程序框圖的運行過程,得出該程序運行的是求數(shù)據(jù)的標(biāo)準(zhǔn)差,即可求得答案.【詳解】模擬程序框圖的運行過程知,該程序運行的結(jié)果是求這個數(shù)據(jù)的標(biāo)準(zhǔn)差這組數(shù)據(jù)的平均數(shù)是方差是:標(biāo)準(zhǔn)差是故答案為:.【點睛】本題主要考查了根據(jù)程序框圖求輸出結(jié)果,解題關(guān)鍵是掌握程序框圖基礎(chǔ)知識和計算數(shù)據(jù)方差的解法,考查了分析能力和計算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)第2組抽人;第3組抽3人;第4組抽1人;(III).【解析】

(Ⅰ)由頻率表中第1組數(shù)據(jù)可知,第1組總?cè)藬?shù)為,再結(jié)合頻率分布直方圖可知∴=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,,(Ⅱ)第2,3,4組中回答正確的共有54人.∴利用分層抽樣在54人中抽取6人,每組分別抽取的人數(shù)為:第2組:人,第3組:人,第4組:人.(Ⅲ)設(shè)第2組的2人為、,第3組的3人為、、,第4組的1人為,則從6人中抽2人所有可能的結(jié)果有:,,,,,,,,,,,,,,,共15個基本事件,其中第2組至少有1人被抽中的有,,,,,,,,這9個基本事件.∴第2組至少有1人獲得幸運獎的概率為本題考查分層抽樣方法、統(tǒng)計基礎(chǔ)知識與等可能事件的概率.注意等可能事件中的基本事件數(shù)的準(zhǔn)確性.18、(1)證明見解析(2)【解析】

(1)由已知可得是的兩根,利用韋達(dá)定理,化簡可得結(jié)論;(2)結(jié)合(1)原不等式可化為,利用一元二次不等式的解法可得結(jié)果.【詳解】(1)∵不等式的解集為∴是的兩根,且∴∴,所以;(2)因為,,所以,即,又即,解集為【點睛】本題考查了求一元二次不等式的解法,是基礎(chǔ)題目.若,則的解集是;的解集是.19、(1)選擇①,;選擇②,(2)【解析】

(1)選擇①,利用正弦定理余弦定理化簡即得C;選擇②,利用正弦定理化簡即得C的值;(2)根據(jù)余弦定理得,再求的面積.【詳解】解:(1)選擇①根據(jù)正弦定理得,從而可得,根據(jù)余弦定理,解得,因為,故.選擇②根據(jù)正弦定理有,即,即因為,故,從而有,故(2)根據(jù)余弦定理得,得,即,解得,又因為的面積為,故的面積為.【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.20、(1)(2)【解析】

(1)利用二倍角公式以及輔助角公式化簡即可.(2)利用配湊把打開即可.【詳解】解:(1)原式(2),,又,,,,【點睛】本題主要考查了二倍角公式,兩角和與差的正切的應(yīng)用.輔助角公式.21、(1)見解析;(2)【解析】

(1)證明,利用平面即可證得,問題得證.(2)過點作于點,過點作于點,連接.當(dāng)與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【詳解】(1)因為底面為菱形,所以為等邊三角形,又為中點所以,又所以因為平面,平面所以,又所以平面(2)過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論