2023-2024學(xué)年江西省宜春市豐城市重點達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷含解析_第1頁
2023-2024學(xué)年江西省宜春市豐城市重點達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷含解析_第2頁
2023-2024學(xué)年江西省宜春市豐城市重點達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷含解析_第3頁
2023-2024學(xué)年江西省宜春市豐城市重點達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷含解析_第4頁
2023-2024學(xué)年江西省宜春市豐城市重點達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江西省宜春市豐城市重點達(dá)標(biāo)名校中考數(shù)學(xué)押題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列4個點,不在反比例函數(shù)圖象上的是()A.(2,-3) B.(-3,2) C.(3,-2) D.(3,2)2.上體育課時,小明5次投擲實心球的成績?nèi)缦卤硭?,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.03.下列幾何體中,其三視圖都是全等圖形的是()A.圓柱 B.圓錐 C.三棱錐 D.球4.如圖,將△ABC繞點C順時針旋轉(zhuǎn),使點B落在AB邊上點B′處,此時,點A的對應(yīng)點A′恰好落在BC邊的延長線上,下列結(jié)論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′5.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差6.-5的倒數(shù)是A. B.5 C.- D.-57.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結(jié)論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有()A.1 B.2 C.3 D.48.在中,,,,則的值是()A. B. C. D.9.2017年新設(shè)了雄安新區(qū),周邊經(jīng)濟(jì)受到刺激綜合實力大幅躍升,其中某地區(qū)生產(chǎn)總值預(yù)計可增長到305.5億元其中305.5億用科學(xué)記數(shù)法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×101110.按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是()①△ABC與△DEF是位似圖形

②△ABC與△DEF是相似圖形③△ABC與△DEF的周長比為1:2

④△ABC與△DEF的面積比為4:1.A.1 B.2 C.3 D.411.如圖,?ABCD對角線AC與BD交于點O,且AD=3,AB=5,在AB延長線上取一點E,使BE=AB,連接OE交BC于F,則BF的長為()A. B. C. D.112.統(tǒng)計學(xué)校排球隊員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計結(jié)果如下表:年齡(歲)12131415人數(shù)(個)2468根據(jù)表中信息可以判斷該排球隊員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,矩形ABCD中,AB=3,對角線AC,BD相交于點O,AE垂直平分OB于點E,則AD的長為____________.14.如圖是測量河寬的示意圖,AE與BC相交于點D,∠B=∠C=90°,測得BD=120m,DC=60m,EC=50m,求得河寬AB=______m.15.已知某二次函數(shù)圖像的最高點是坐標(biāo)原點,請寫出一個符合要求的函數(shù)解析式:_______.16.如圖,把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數(shù)是_____°.17.已知△ABC中,AB=6,AC=BC=5,將△ABC折疊,使點A落在BC邊上的點D處,折痕為EF(點E.F分別在邊AB、AC上).當(dāng)以B.E.D為頂點的三角形與△DEF相似時,BE的長為_____.18.已知a+b=1,那么a2-b2+2b=________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)關(guān)于x的一元二次方程ax2+bx+1=1.(1)當(dāng)b=a+2時,利用根的判別式判斷方程根的情況;(2)若方程有兩個相等的實數(shù)根,寫出一組滿足條件的a,b的值,并求此時方程的根.20.(6分)在平面直角坐標(biāo)系xOy中,已知兩點A(0,3),B(1,0),現(xiàn)將線段AB繞點B按順時針方向旋轉(zhuǎn)90°得到線段BC,拋物線y=ax2+bx+c經(jīng)過點C.(1)如圖1,若拋物線經(jīng)過點A和D(﹣2,0).①求點C的坐標(biāo)及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標(biāo),若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.21.(6分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣12x+3的圖象與反比例函數(shù)y=kx(x>0,k是常數(shù))的圖象交于A(a,2),B(4,b)兩點.求反比例函數(shù)的表達(dá)式;點C是第一象限內(nèi)一點,連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點22.(8分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.23.(8分)如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時,求線段BC的長;(3)如圖②,若點F為AB的中點,連結(jié)FN、FM,求證:△MFN∽△BDC.24.(10分)如圖,矩形OABC中,點O為原點,點A的坐標(biāo)為(0,8),點C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.(1)求拋物線的函數(shù)表達(dá)式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.①求S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時,S取得最大值;②當(dāng)S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.25.(10分)如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標(biāo).26.(12分)為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個班級,發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.該班共有名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為;將條形統(tǒng)計圖補(bǔ)充完整;已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛活動,請你估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益?27.(12分)全民健身運動已成為一種時尚,為了解揭陽市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷內(nèi)容包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團(tuán);D:散步;E:不運動.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分,運動形式ABCDE人數(shù)請你根據(jù)以上信息,回答下列問題:接受問卷調(diào)查的共有人,圖表中的,.統(tǒng)計圖中,類所對應(yīng)的扇形的圓心角的度數(shù)是度.揭陽市環(huán)島路是市民喜愛的運動場所之一,每天都有“暴走團(tuán)”活動,若某社區(qū)約有人,請你估計一下該社區(qū)參加環(huán)島路“暴走團(tuán)”的人數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:根據(jù)得k=xy=-6,所以只要點的橫坐標(biāo)與縱坐標(biāo)的積等于-6,就在函數(shù)圖象上.解答:解:原式可化為:xy=-6,A、2×(-3)=-6,符合條件;B、(-3)×2=-6,符合條件;C、3×(-2)=-6,符合條件;D、3×2=6,不符合條件.故選D.2、D【解析】

解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點睛】本題考查眾數(shù);中位數(shù).3、D【解析】分析:任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,其他的幾何體的視圖都有不同的.詳解:圓柱,圓錐,三棱錐,球中,三視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,故選D.點睛:本題考查簡單幾何體的三視圖,本題解題的關(guān)鍵是看出各個圖形的在任意方向上的視圖.4、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)求解即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì),A:∠與∠均為旋轉(zhuǎn)角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結(jié)論,故答案:C.【點睛】本題主要考查三角形旋轉(zhuǎn)后具有的性質(zhì),注意靈活運用各條件5、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.6、C【解析】

若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).【詳解】解:5的倒數(shù)是.故選C.7、C【解析】

①圖中有3個等腰直角三角形,故結(jié)論錯誤;②根據(jù)ASA證明即可,結(jié)論正確;③利用面積法證明即可,結(jié)論正確;④利用三角形的中線的性質(zhì)即可證明,結(jié)論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考選擇題中的壓軸題.8、D【解析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.9、C【解析】解:305.5億=3.055×1.故選C.10、C【解析】

根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進(jìn)而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】解:根據(jù)位似性質(zhì)得出①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形,∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項錯誤,根據(jù)面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.故選C.【點睛】此題主要考查了位似圖形的性質(zhì),中等難度,熟悉位似圖形的性質(zhì)是解決問題的關(guān)鍵.11、A【解析】

首先作輔助線:取AB的中點M,連接OM,由平行四邊形的性質(zhì)與三角形中位線的性質(zhì),即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對應(yīng)邊成比例即可求得BF的值.【詳解】取AB的中點M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【點睛】此題考查了平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì)等知識.解此題的關(guān)鍵是準(zhǔn)確作出輔助線,合理應(yīng)用數(shù)形結(jié)合思想解題.12、B【解析】

根據(jù)加權(quán)平均數(shù)、眾數(shù)、中位數(shù)的計算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.?dāng)?shù)據(jù)x1、x2、……、xn的加權(quán)平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權(quán)數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:∵四邊形ABCD是矩形,

∴OB=OD,OA=OC,AC=BD,

∴OA=OB,

∵AE垂直平分OB,

∴AB=AO,

∴OA=AB=OB=3,

∴BD=2OB=6,

∴AD=.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.14、1【解析】

由兩角對應(yīng)相等可得△BAD∽△CED,利用對應(yīng)邊成比例即可得兩岸間的大致距離AB的長.【詳解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案為1.【點睛】本題主要考查了相似三角形的應(yīng)用,用到的知識點為:兩角對應(yīng)相等的兩三角形相似;相似三角形的對應(yīng)邊成比例.15、等【解析】

根據(jù)二次函數(shù)的圖象最高點是坐標(biāo)原點,可以得到a<0,b=0,c=0,所以解析式滿足a<0,b=0,c=0即可.【詳解】解:根據(jù)二次函數(shù)的圖象最高點是坐標(biāo)原點,可以得到a<0,b=0,c=0,例如:.【點睛】此題是開放性試題,考查函數(shù)圖象及性質(zhì)的綜合運用,對考查學(xué)生所學(xué)函數(shù)的深入理解、掌握程度具有積極的意義.16、1【解析】

由旋轉(zhuǎn)的性質(zhì)可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質(zhì)可求∠ACA'=1°=∠B′CB.【詳解】解:∵把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.17、3或【解析】

以B.E.D為頂點的三角形與△DEF相似分兩種情形畫圖分別求解即可.【詳解】如圖作CM⊥AB當(dāng)∠FED=∠EDB時,∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,設(shè)EF交AD于點O∵AO=OD,OE∥BD∴AE=EB=3當(dāng)∠FED=∠DEB時則∠FED=∠FEA=∠DEB=60°此時△FED~△DEB,設(shè)AE=ED=x,作DN⊥AB于N,則EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案為3或【點睛】本題考察學(xué)生對相似三角形性質(zhì)定理的掌握和應(yīng)用,熟練掌握相似三角形性質(zhì)定理是解答本題的關(guān)鍵,本題計算量比較大,計算能力也很關(guān)鍵.18、1【解析】

解:∵a+b=1,∴原式=故答案為1.【點睛】本題考查的是平方差公式的靈活運用.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(2)方程有兩個不相等的實數(shù)根;(2)b=-2,a=2時,x2=x2=﹣2.【解析】

分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數(shù)根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數(shù)根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當(dāng)時,方程有兩個不相等的實數(shù)根.當(dāng)時,方程有兩個相等的實數(shù)根.當(dāng)時,方程沒有實數(shù)根.20、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解析】

(1)①先判斷出△AOB≌△GBC,得出點C坐標(biāo),進(jìn)而用待定系數(shù)法即可得出結(jié)論;②分兩種情況,利用平行線(對稱)和直線和拋物線的交點坐標(biāo)的求法,即可得出結(jié)論;(2)同(1)②的方法,借助圖象即可得出結(jié)論.【詳解】(1)①如圖2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋轉(zhuǎn)知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,過點C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),拋物線經(jīng)過點A(1,3),和D(﹣2,1),∴,∴,∴拋物線解析式為y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如圖1,OP∥BC,∵B(1,1),C(4,1),∴直線BC的解析式為y=x﹣,∴直線OP的解析式為y=x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍)∴P(,);在直線OP上取一點M(3,1),∴點M的對稱點M'(3,﹣1),∴直線OP'的解析式為y=﹣x,∵拋物線解析式為y=﹣x2+x+3;聯(lián)立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如圖3,∵拋物線y=ax2+bx+c經(jīng)過點C(4,1),E(2,1),∴,∴,∴拋物線y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合條件的Q點恰好有2個,∴方程ax2﹣6ax+8a+1=1有一個正根和一個負(fù)根或一個正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法,全等三角形的判定和性質(zhì),平行線的性質(zhì),對稱的性質(zhì),解題的關(guān)鍵是求出直線和拋物線的交點坐標(biāo).21、(1)反比例函數(shù)的表達(dá)式為y=4x(x>0);(2)點P【解析】

(1)根據(jù)點A(a,2),B(4,b)在一次函數(shù)y=﹣12x+3的圖象上求出a、b的值,得出A、B(2)延長CA交y軸于點E,延長CB交x軸于點F,構(gòu)建矩形OECF,根據(jù)S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF,設(shè)點P(0,m),根據(jù)反比例函數(shù)的幾何意義解答即可.【詳解】(1)∵點A(a,2),B(4,b)在一次函數(shù)y=﹣12x∴﹣12a+3=2,b=﹣1∴a=2,b=1,∴點A的坐標(biāo)為(2,2),點B的坐標(biāo)為(4,1),又∵點A(2,2)在反比例函數(shù)y=kx∴k=2×2=4,∴反比例函數(shù)的表達(dá)式為y=4x(x(2)延長CA交y軸于點E,延長CB交x軸于點F,∵AC∥x軸,BC∥y軸,則有CE⊥y軸,CF⊥x軸,點C的坐標(biāo)為(4,2)∴四邊形OECF為矩形,且CE=4,CF=2,∴S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣12×2×2﹣1=4,設(shè)點P的坐標(biāo)為(0,m),則S△OAP=12×2?|m∴m=±4,∴點P的坐標(biāo)為(0,4)或(0,﹣4).【點睛】此題考查了反比例函數(shù)與一次函數(shù)的交點問題,涉及的知識有:坐標(biāo)與圖形性質(zhì),直線與坐標(biāo)軸的交點,待定系數(shù)法求函數(shù)解析式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.22、木竿PQ的長度為3.35米.【解析】

過N點作ND⊥PQ于D,則四邊形DPMN為矩形,根據(jù)矩形的性質(zhì)得出DP,DN的長,然后根據(jù)同一時刻物高與影長成正比求出QD的長,即可得出PQ的長.試題解析:【詳解】解:過N點作ND⊥PQ于D,則四邊形DPMN為矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的長度為3.35米.【點睛】本題考查了相似三角形的應(yīng)用,作出輔助線,根據(jù)同一時刻物高與影長成正比列出比例式是解決此題的關(guān)鍵.23、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)為BC的中點,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵M(jìn)B=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設(shè)BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負(fù)值舍去),∴BC=2a=;(3)∵F是AB的中點,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點睛:本題主要考查相似形的綜合問題,解題的關(guān)鍵是掌握等腰三角形三線合一的性質(zhì)、直角三角形和平行四邊形的性質(zhì)及全等三角形與相似三角形的判定與性質(zhì)等知識點.24、(1);(2)①,當(dāng)m=5時,S取最大值;②滿足條件的點F共有四個,坐標(biāo)分別為,,,,【解析】

(1)將A、C兩點坐標(biāo)代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;

(2)①先用m表示出QE的長度,進(jìn)而求出三角形的面積S關(guān)于m的函數(shù);

②直接寫出滿足條件的F點的坐標(biāo)即可,注意不要漏寫.【詳解】解:(1)將A、C兩點坐標(biāo)代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當(dāng)m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標(biāo)為(3,8),Q(3,4),當(dāng)∠FDQ=90°時,F(xiàn)1(,8),當(dāng)∠FQD=90°時,則F2(,4),當(dāng)∠DFQ=90°時,設(shè)F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F(xiàn)4(,6﹣),滿足條件的點F共有四個,坐標(biāo)分別為F1(,8),F(xiàn)2(,4),F(xiàn)3(,6+),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論