版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年四川省眉山縣中考二模數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在中,點(diǎn)D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個(gè)A.1 B.2 C.3 D.42.分別寫有數(shù)字0,﹣1,﹣2,1,3的五張卡片,除數(shù)字不同外其他均相同,從中任抽一張,那么抽到負(fù)數(shù)的概率是()A. B. C. D.3.下面運(yùn)算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|4.3的倒數(shù)是()A. B. C. D.5.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣16.如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對(duì)于下列各值:①線段MN的長(zhǎng);②△PAB的周長(zhǎng);③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大?。渲袝?huì)隨點(diǎn)P的移動(dòng)而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤7.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,則BD兩點(diǎn)間的距離為()A.2 B. C. D.8.實(shí)數(shù)﹣5.22的絕對(duì)值是()A.5.22 B.﹣5.22 C.±5.22 D.9.如表記錄了甲、乙、丙、丁四名跳高運(yùn)動(dòng)員最近幾次選拔賽成績(jī)的平均數(shù)與方差:甲乙丙丁平均數(shù)(cm)185180185180方差3.63.67.48.1根據(jù)表數(shù)據(jù),從中選擇一名成績(jī)好且發(fā)揮穩(wěn)定的參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁10.如圖,在△ABC中,以點(diǎn)B為圓心,以BA長(zhǎng)為半徑畫弧交邊BC于點(diǎn)D,連接AD.若∠B=40°,∠C=36°,則∠DAC的度數(shù)是()A.70° B.44° C.34° D.24°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點(diǎn),E是邊AC上一點(diǎn),∠ADE=∠C,∠BAC的平分線分別交DE、BC于點(diǎn)F、G,那么的值為__________.12.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.13.如圖,在正六邊形ABCDEF的上方作正方形AFGH,聯(lián)結(jié)GC,那么的正切值為___.14.如圖,已知直線l:y=x,過點(diǎn)(2,0)作x軸的垂線交直線l于點(diǎn)N,過點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過點(diǎn)M1作x軸的垂線交直線l于N1,過點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2,……;按此做法繼續(xù)下去,則點(diǎn)M2000的坐標(biāo)為______________.15.因式分解:2x16.小明用一個(gè)半徑為30cm且圓心角為240°的扇形紙片做成一個(gè)圓錐形紙帽(粘合部分忽略不計(jì)),那么這個(gè)圓錐形紙帽的底面半徑為_____cm.三、解答題(共8題,共72分)17.(8分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,的半徑為,P為上一動(dòng)點(diǎn).點(diǎn)B,C的坐標(biāo)分別為______,______;是否存在點(diǎn)P,使得為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;連接PB,若E為PB的中點(diǎn),連接OE,則OE的最大值______.18.(8分)如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).(1)求證:≌;(2)當(dāng)時(shí),求四邊形AECF的面積.19.(8分)某學(xué)校八、九兩個(gè)年級(jí)各有學(xué)生180人,為了解這兩個(gè)年級(jí)學(xué)生的體質(zhì)健康情況,進(jìn)行了抽樣調(diào)查,具體過程如下:收集數(shù)據(jù)從八、九兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)如下:八年級(jí)7886748175768770759075798170748086698377九年級(jí)9373888172819483778380817081737882807040整理、描述數(shù)據(jù)將成績(jī)按如下分段整理、描述這兩組樣本數(shù)據(jù):成績(jī)(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年級(jí)人數(shù)0011171九年級(jí)人數(shù)1007102(說明:成績(jī)80分及以上為體質(zhì)健康優(yōu)秀,70~79分為體質(zhì)健康良好,60~69分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:年級(jí)平均數(shù)中位數(shù)眾數(shù)方差八年級(jí)78.377.57533.6九年級(jí)7880.5a52.1(1)表格中a的值為______;請(qǐng)你估計(jì)該校九年級(jí)體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為多少?根據(jù)以上信息,你認(rèn)為哪個(gè)年級(jí)學(xué)生的體質(zhì)健康情況更好一些?請(qǐng)說明理由.(請(qǐng)從兩個(gè)不同的角度說明推斷的合理性)20.(8分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點(diǎn),連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點(diǎn)P作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,過點(diǎn)A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.21.(8分)(1)解方程:.(2)解不等式組:22.(10分)如圖,直線y=x+2與雙曲線y=相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.求雙曲線的解析式;點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).23.(12分)為營(yíng)造“安全出行”的良好交通氛圍,實(shí)時(shí)監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點(diǎn)C,橫桿DE∥AB,攝像頭EF⊥DE于點(diǎn)E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點(diǎn)F到地面AB的距離.(精確到百分位)24.已知點(diǎn)O是正方形ABCD對(duì)角線BD的中點(diǎn).(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.①∠AEM=∠FEM;②點(diǎn)F是AB的中點(diǎn);(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請(qǐng)判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動(dòng)點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng)時(shí),請(qǐng)猜想的值(請(qǐng)直接寫出結(jié)論).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
先由兩組對(duì)邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當(dāng)∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個(gè)角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對(duì)角相等,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等又得到一對(duì)角相等,等量代換可得∠EAD=∠EDA,利用等角對(duì)等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進(jìn)而得到正確說法的個(gè)數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項(xiàng)①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項(xiàng)②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項(xiàng)③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項(xiàng)④正確,則其中正確的個(gè)數(shù)有4個(gè).故選D.【點(diǎn)睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識(shí)有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵.2、B【解析】試題分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負(fù)數(shù)的概率是.故選B.考點(diǎn):概率.3、D【解析】
分別利用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)分別化簡(jiǎn)求出答案.【詳解】解:A,,故此選項(xiàng)錯(cuò)誤;B,,故此選項(xiàng)錯(cuò)誤;C,,故此選項(xiàng)錯(cuò)誤;D,,故此選項(xiàng)正確.所以D選項(xiàng)是正確的.【點(diǎn)睛】靈活運(yùn)用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)可以求出答案.4、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負(fù)數(shù)的倒數(shù)還是負(fù)數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).5、C【解析】
首先找出分式的最簡(jiǎn)公分母,進(jìn)而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗(yàn):當(dāng)x=-時(shí),(x+1)2≠0,故x=-是原方程的根.故選C.【點(diǎn)睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關(guān)鍵.6、B【解析】試題分析:①、MN=AB,所以MN的長(zhǎng)度不變;②、周長(zhǎng)C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個(gè)具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點(diǎn):動(dòng)點(diǎn)問題,平行線間的距離處處相等,三角形的中位線7、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點(diǎn)睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關(guān)鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關(guān)系.題目整體較為簡(jiǎn)單,適合隨堂訓(xùn)練.8、A【解析】
根據(jù)絕對(duì)值的性質(zhì)進(jìn)行解答即可.【詳解】實(shí)數(shù)﹣5.1的絕對(duì)值是5.1.故選A.【點(diǎn)睛】本題考查的是實(shí)數(shù)的性質(zhì),熟知絕對(duì)值的性質(zhì)是解答此題的關(guān)鍵.9、A【解析】
首先比較平均數(shù),平均數(shù)相同時(shí)選擇方差較小的運(yùn)動(dòng)員參加.【詳解】∵=>=,∴從甲和丙中選擇一人參加比賽,∵=<<,∴選擇甲參賽,故選A.【點(diǎn)睛】此題主要考查了平均數(shù)和方差的應(yīng)用,解題關(guān)鍵是明確平均數(shù)越高,成績(jī)?cè)礁?,方差越小,成?jī)?cè)椒€(wěn)定.10、C【解析】
易得△ABD為等腰三角形,根據(jù)頂角可算出底角,再用三角形外角性質(zhì)可求出∠DAC【詳解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故選C.【點(diǎn)睛】本題考查三角形的角度計(jì)算,熟練掌握三角形外角性質(zhì)是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】
由題中所給條件證明△ADF△ACG,可求出的值.【詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點(diǎn)AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),難度適中,需熟練掌握.12、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點(diǎn):等腰直角三角形;平行線的性質(zhì).13、【解析】
延長(zhǎng)GF與CD交于點(diǎn)D,過點(diǎn)E作交DF于點(diǎn)M,設(shè)正方形的邊長(zhǎng)為,則解直角三角形可得,根據(jù)正切的定義即可求得的正切值【詳解】延長(zhǎng)GF與CD交于點(diǎn)D,過點(diǎn)E作交DF于點(diǎn)M,設(shè)正方形的邊長(zhǎng)為,則,故答案為:【點(diǎn)睛】考查正多邊形的性質(zhì),銳角三角函數(shù),構(gòu)造直角三角形是解題的關(guān)鍵.14、(24001,0)【解析】分析:根據(jù)直線l的解析式求出,從而得到根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出然后表示出與的關(guān)系,再根據(jù)點(diǎn)在x軸上,即可求出點(diǎn)M2000的坐標(biāo)詳解:∵直線l:∴∵NM⊥x軸,M1N⊥直線l,∴∴同理,…,所以,點(diǎn)的坐標(biāo)為點(diǎn)M2000的坐標(biāo)為(24001,0).故答案為:(24001,0).點(diǎn)睛:考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)點(diǎn)的坐標(biāo)求線段的長(zhǎng)度,以及如何根據(jù)線段的長(zhǎng)度求出點(diǎn)的坐標(biāo),注意各相關(guān)知識(shí)的綜合應(yīng)用.15、2(x+3)(x﹣3).【解析】試題分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考點(diǎn):因式分解.16、20【解析】
先求出半徑為30cm且圓心角為240°的扇形紙片的弧長(zhǎng),再利用底面周長(zhǎng)=展開圖的弧長(zhǎng)可得.【詳解】=40π.
設(shè)這個(gè)圓錐形紙帽的底面半徑為r.
根據(jù)題意,得40π=2πr,
解得r=20cm.故答案是:20.【點(diǎn)睛】解答本題的關(guān)鍵是有確定底面周長(zhǎng)=展開圖的弧長(zhǎng)這個(gè)等量關(guān)系,然后由扇形的弧長(zhǎng)公式和圓的周長(zhǎng)公式求值.三、解答題(共8題,共72分)17、(1)B(1,0),C(0,﹣4);(2)點(diǎn)P的坐標(biāo)為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點(diǎn)坐標(biāo),令x=0可求得C點(diǎn)坐標(biāo);(2)①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到=2,設(shè)OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標(biāo),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當(dāng)AP最大時(shí),OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點(diǎn)P,使得△PBC為直角三角形,分兩種情況:①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設(shè)OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點(diǎn)P的坐標(biāo)為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當(dāng)AP最大時(shí),OE的值最大,∵當(dāng)P在AC的延長(zhǎng)線上時(shí),AP的值最大,最大值=,∴OE的最大值為.故答案為.18、(1)見解析;(2)【解析】
(1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據(jù)全等三角形的判定推出即可;
(2)求出△ABE是等邊三角形,求出高AH的長(zhǎng),再求出面積即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點(diǎn)E、F分別是BC、AD的中點(diǎn),∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點(diǎn)E、F分別是BC、AD的中點(diǎn),,∴,,∴,,∴四邊形AECF是平行四邊形,∵,∴四邊形AECF是菱形,∴,∵,∴,即是等邊三角形,,由勾股定理得:,∴四邊形AECF的面積是.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)和判定,全等三角形的判定,平行四邊形的性質(zhì)和判定等知識(shí)點(diǎn),能綜合運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵.19、(1)81;(2)108人;(3)見解析.【解析】
(1)根據(jù)眾數(shù)的概念解答;(2)求出九年級(jí)學(xué)生體質(zhì)健康的優(yōu)秀率,計(jì)算即可;(3)分別從不同的角度進(jìn)行評(píng)價(jià).【詳解】解:(1)由測(cè)試成績(jī)可知,81分出現(xiàn)的次數(shù)最多,∴a=81,故答案為:81;(2)九年級(jí)學(xué)生體質(zhì)健康的優(yōu)秀率為:,九年級(jí)體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為:180×60%=108(人),答:估計(jì)該校九年級(jí)體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為108人;(3)①因?yàn)榘四昙?jí)學(xué)生的平均成績(jī)高于九年級(jí)的平均成績(jī),且八年級(jí)學(xué)生成績(jī)的方差小于九年級(jí)的方差,所以八年級(jí)學(xué)生的體質(zhì)健康情況更好一些.②因?yàn)榫拍昙?jí)學(xué)生的優(yōu)秀率(60%)高于八年級(jí)的優(yōu)秀率(40%),且九年級(jí)學(xué)生成績(jī)的眾數(shù)或中位數(shù)高于八年級(jí)的眾數(shù)或中位數(shù),所以九年級(jí)學(xué)生的體質(zhì)健康情況更好一些.【點(diǎn)睛】本題考查的是用樣本估計(jì)總體、方差、平均數(shù)、眾數(shù)和中位數(shù)的概念和性質(zhì),正確求出樣本的眾數(shù)、理解方差和平均數(shù)、眾數(shù)、中位線的性質(zhì)是解題的關(guān)鍵.20、(1)見解析;(2)見解析;(3)AB=1【解析】
(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點(diǎn)N,連接HN、PN,過點(diǎn)E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設(shè)PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據(jù)此求得k=2,從而得出AP、BP的長(zhǎng),利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點(diǎn)N,連接HN、PN,過點(diǎn)E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點(diǎn)共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設(shè)PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據(jù)勾股定理得,AB=1.【點(diǎn)睛】本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握?qǐng)A周角定理、四點(diǎn)共圓條件、相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識(shí)點(diǎn).21、(1)無解;(1)﹣1<x≤1.【解析】
(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解;(1)分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【詳解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,經(jīng)檢驗(yàn)x=1是增根,分式方程無解;(1),由①得:x>﹣1,由②得:x≤1,則不等式組的解集為﹣1<x≤1.【點(diǎn)睛】此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗(yàn).22、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A點(diǎn)坐標(biāo)代入直線解析式可求得m的值,則可求得A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設(shè)P(t,0),則可表示出PC的長(zhǎng),進(jìn)一步表示出△ACP的面積,可得到關(guān)于t的方程,則可求得P點(diǎn)坐標(biāo).詳解:(1)把A點(diǎn)坐標(biāo)代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A點(diǎn)也在雙曲線上,∴k=2×3=6,∴雙曲線解析式為y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵點(diǎn)P在x軸上,∴可設(shè)P點(diǎn)坐標(biāo)為(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面積為3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P點(diǎn)坐標(biāo)為(﹣6,0)或(﹣2,0).點(diǎn)睛:本題主要考查函數(shù)圖象的交點(diǎn),掌握函數(shù)圖象的交點(diǎn)坐標(biāo)滿足每個(gè)函數(shù)解析式是解題的關(guān)鍵.23、(1)(2)6.03米【解析】
分析:延長(zhǎng)ED,AM交于點(diǎn)P,由∠CDE=162°及三角形外角的性質(zhì)可得出結(jié)果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長(zhǎng)ED,AM交于點(diǎn)P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點(diǎn)F到地面AB的距離為6.03米.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用,解決此類問題要了解角之間的關(guān)系,找到已知和未知相關(guān)聯(lián)的的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高線或垂線構(gòu)造直角三角形.24、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點(diǎn)E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點(diǎn)F是AB的中點(diǎn).;(2)過點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年股權(quán)激勵(lì)合同:股權(quán)獎(jiǎng)勵(lì)與業(yè)績(jī)掛鉤條款3篇
- 2025年度濾袋材料費(fèi)用合同采購與項(xiàng)目進(jìn)度管理合同3篇
- 2025年度網(wǎng)絡(luò)安全防護(hù)設(shè)備采購合同范本與安全等級(jí)保護(hù)2篇
- 學(xué)生校園欺凌情況調(diào)查問卷
- 敢于擔(dān)當(dāng)善于化解難題體會(huì)
- 護(hù)理人力資源管理1
- 黨史知識(shí)競(jìng)賽題庫及答案-一起學(xué)習(xí)黨史吧
- 八一南昌起義的意義是什么
- 2024版地方特色農(nóng)產(chǎn)品購銷合作合同版
- 2024集體土地租賃協(xié)議書
- JTG 3441-2024公路工程無機(jī)結(jié)合料穩(wěn)定材料試驗(yàn)規(guī)程
- 羊肉銷售人員工作匯報(bào)
- 律所標(biāo)書模板
- 安徽省合肥市包河區(qū)四十八中學(xué)2023-2024學(xué)年數(shù)學(xué)七年級(jí)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析
- 美術(shù)概論-課件
- 危險(xiǎn)化學(xué)品安全監(jiān)管執(zhí)法培訓(xùn)課件
- 保潔供方管控要點(diǎn)
- 空氣源熱泵冷暖空調(diào)、熱水項(xiàng)目施工方案
- 《行政組織學(xué)》期末復(fù)習(xí)指導(dǎo)
- 基于深度學(xué)習(xí)的醫(yī)學(xué)圖像增強(qiáng)與生成
- 2023《樓體亮化工程施工合同》電子版
評(píng)論
0/150
提交評(píng)論