2024屆四川省儀隴縣重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第1頁
2024屆四川省儀隴縣重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第2頁
2024屆四川省儀隴縣重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第3頁
2024屆四川省儀隴縣重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第4頁
2024屆四川省儀隴縣重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆四川省儀隴縣重點(diǎn)中學(xué)中考二模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某小組在“用頻率估計(jì)概率”的試驗(yàn)中,統(tǒng)計(jì)了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗(yàn)最有可能的是()A.在裝有1個(gè)紅球和2個(gè)白球(除顏色外完全相同)的不透明袋子里隨機(jī)摸出一個(gè)球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.?dāng)S一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面朝上”D.?dāng)S一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是62.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3.若x,y的值均擴(kuò)大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.4.已知在一個(gè)不透明的口袋中有4個(gè)形狀、大小、材質(zhì)完全相同的球,其中1個(gè)紅色球,3個(gè)黃色球.從口袋中隨機(jī)取出一個(gè)球(不放回),接著再取出一個(gè)球,則取出的兩個(gè)都是黃色球的概率為()A.34 B.23 C.95.下列圖形中,既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是()A. B. C. D.6.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°7.一次函數(shù)的圖象上有點(diǎn)和點(diǎn),且,下列敘述正確的是A.若該函數(shù)圖象交y軸于正半軸,則B.該函數(shù)圖象必經(jīng)過點(diǎn)C.無論m為何值,該函數(shù)圖象一定過第四象限D(zhuǎn).該函數(shù)圖象向上平移一個(gè)單位后,會(huì)與x軸正半軸有交點(diǎn)8.觀察圖中的“品”字形中個(gè)數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為A.75 B.89 C.103 D.1399.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個(gè)數(shù)據(jù)3,則下列統(tǒng)計(jì)量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差10.如圖,A,C,E,G四點(diǎn)在同一直線上,分別以線段AC,CE,EG為邊在AG同側(cè)作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點(diǎn)H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.計(jì)算兩個(gè)兩位數(shù)的積,這兩個(gè)數(shù)的十位上的數(shù)字相同,個(gè)位上的數(shù)字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發(fā)現(xiàn)上面每個(gè)數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結(jié)果的千位和百位,兩個(gè)個(gè)位數(shù)字相乘的積作為結(jié)果的,請(qǐng)寫出一個(gè)符合上述規(guī)律的算式.(2)設(shè)其中一個(gè)數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,請(qǐng)用含a,b的算式表示這個(gè)規(guī)律.12.如圖,在平面直角坐標(biāo)系xOy中,△ABC可以看作是△DEF經(jīng)過若干次圖形的變化(平移、旋轉(zhuǎn)、軸對(duì)稱)得到的,寫出一種由△DEF得到△ABC的過程____.13.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動(dòng)點(diǎn)P在拋物線上.b=_________,c=_________,點(diǎn)B的坐標(biāo)為_____________;(直接填寫結(jié)果)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;過動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).14.某小區(qū)購買了銀杏樹和玉蘭樹共150棵用來美化小區(qū)環(huán)境,購買銀杏樹用了12000元,購買玉蘭樹用了9000元.已知玉蘭樹的單價(jià)是銀杏樹單價(jià)的1.5倍,求銀杏樹和玉蘭樹的單價(jià).設(shè)銀杏樹的單價(jià)為x元,可列方程為______.15.如圖,定長(zhǎng)弦CD在以AB為直徑的⊙O上滑動(dòng)(點(diǎn)C、D與點(diǎn)A、B不重合),M是CD的中點(diǎn),過點(diǎn)C作CP⊥AB于點(diǎn)P,若CD=3,AB=8,PM=l,則l的最大值是16.已知ba=2三、解答題(共8題,共72分)17.(8分)如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求證:△ABD是等邊三角形;(2)若BD=3,求⊙O的半徑.18.(8分)如圖,在?ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).求證:△ADE≌△CBF;求證:四邊形BFDE為矩形.19.(8分)計(jì)算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|20.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點(diǎn),且S△PCD=2S△PAD,求點(diǎn)P的坐標(biāo);(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時(shí),求點(diǎn)D的坐標(biāo).21.(8分)我們來定義一種新運(yùn)算:對(duì)于任意實(shí)數(shù)x、y,“※”為a※b=(a+1)(b+1)﹣1.(1)計(jì)算(﹣3)※9(2)嘉琪研究運(yùn)算“※”之后認(rèn)為它滿足交換律,你認(rèn)為她的判斷(正確、錯(cuò)誤)(3)請(qǐng)你幫助嘉琪完成她對(duì)運(yùn)算“※”是否滿足結(jié)合律的證明.22.(10分)閱讀材料:已知點(diǎn)和直線,則點(diǎn)P到直線的距離d可用公式計(jì)算.例如:求點(diǎn)到直線的距離.

解:因?yàn)橹本€可變形為,其中,所以點(diǎn)到直線的距離為:.根據(jù)以上材料,求:點(diǎn)到直線的距離,并說明點(diǎn)P與直線的位置關(guān)系;已知直線與平行,求這兩條直線的距離.23.(12分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).(1)求證:△ABE∽△ECM;(2)探究:在△DEF運(yùn)動(dòng)過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說明理由;(3)當(dāng)線段AM最短時(shí),求重疊部分的面積.24.如圖,△DEF是由△ABC通過一次旋轉(zhuǎn)得到的,請(qǐng)用直尺和圓規(guī)畫出旋轉(zhuǎn)中心.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)統(tǒng)計(jì)圖可知,試驗(yàn)結(jié)果在0.16附近波動(dòng),即其概率P≈0.16,計(jì)算四個(gè)選項(xiàng)的概率,約為0.16者即為正確答案.【詳解】根據(jù)圖中信息,某種結(jié)果出現(xiàn)的頻率約為0.16,在裝有1個(gè)紅球和2個(gè)白球(除顏色外完全相同)的不透明袋子里隨機(jī)摸出一個(gè)球是“白球”的概率為≈0.67>0.16,故A選項(xiàng)不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項(xiàng)不符合題意,擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面朝上”的概率是=0.5>0.16,故C選項(xiàng)不符合題意,擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是6的概率是≈0.16,故D選項(xiàng)符合題意,故選D.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.用到的知識(shí)點(diǎn)為:頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關(guān)鍵.2、C【解析】

根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當(dāng)x=1時(shí),y<0,即a+b+c<0,則②錯(cuò)誤;根據(jù)對(duì)稱軸可得:-b2a=-3根據(jù)函數(shù)與x軸有兩個(gè)交點(diǎn)可得:b2故選C.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì).能通過圖象分析a,b,c的正負(fù),以及通過一些特殊點(diǎn)的位置得出a,b,c之間的關(guān)系是解題關(guān)鍵.3、D【解析】

根據(jù)分式的基本性質(zhì),x,y的值均擴(kuò)大為原來的3倍,求出每個(gè)式子的結(jié)果,看結(jié)果等于原式的即是答案.【詳解】根據(jù)分式的基本性質(zhì),可知若x,y的值均擴(kuò)大為原來的3倍,A、,錯(cuò)誤;B、,錯(cuò)誤;C、,錯(cuò)誤;D、,正確;故選D.【點(diǎn)睛】本題考查的是分式的基本性質(zhì),即分子分母同乘以一個(gè)不為0的數(shù),分式的值不變.此題比較簡(jiǎn)單,但計(jì)算時(shí)一定要細(xì)心.4、D【解析】試題分析:列舉出所有情況,看取出的兩個(gè)都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個(gè)都是黃色的情況數(shù)有6種,所以概率為12故選D.考點(diǎn):列表法與樹狀法.5、C【解析】

根據(jù)中心對(duì)稱圖形和軸對(duì)稱圖形對(duì)各選項(xiàng)分析判斷即可得解.【詳解】A、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、既是中心對(duì)稱圖形,又是軸對(duì)稱圖形,故本選項(xiàng)正確;D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.6、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.7、B【解析】

利用一次函數(shù)的性質(zhì)逐一進(jìn)行判斷后即可得到正確的結(jié)論.【詳解】解:一次函數(shù)的圖象與y軸的交點(diǎn)在y軸的正半軸上,則,,若,則,故A錯(cuò)誤;

把代入得,,則該函數(shù)圖象必經(jīng)過點(diǎn),故B正確;

當(dāng)時(shí),,,函數(shù)圖象過一二三象限,不過第四象限,故C錯(cuò)誤;

函數(shù)圖象向上平移一個(gè)單位后,函數(shù)變?yōu)?,所以?dāng)時(shí),,故函數(shù)圖象向上平移一個(gè)單位后,會(huì)與x軸負(fù)半軸有交點(diǎn),故D錯(cuò)誤,

故選B.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)圖象與幾何變換,解題的關(guān)鍵是熟練掌握一次函數(shù)的性質(zhì),靈活應(yīng)用這些知識(shí)解決問題,屬于中考??碱}型.8、A【解析】觀察可得,上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,所以b=26=64,又因上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),所以a=11+64=75,故選B.9、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個(gè)數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個(gè)數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個(gè)數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個(gè)數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點(diǎn)睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.10、A【解析】

根據(jù)等邊三角形的性質(zhì)得到FG=EG=3,∠AGF=∠FEG=60°,根據(jù)三角形的內(nèi)角和得到∠AFG=90°,根據(jù)相似三角形的性質(zhì)得到==,==,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積的計(jì)算,熟練掌握相似三角形的性質(zhì)和判定是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(1)十位和個(gè)位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解析】分析:(1)、根據(jù)題意得出其一般性的規(guī)律,從而得出答案;(2)、利用代數(shù)式表示出其一般規(guī)律得出答案.詳解:(1)由已知等式知,每個(gè)數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結(jié)果的千位和百位,兩個(gè)個(gè)位數(shù)字相乘的積作為結(jié)果的十位和個(gè)位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點(diǎn)睛:本題主要考查的是規(guī)律的發(fā)現(xiàn)與整理,屬于基礎(chǔ)題型.找出一般性的規(guī)律是解決這個(gè)問題的關(guān)鍵.12、先以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì),平移的性質(zhì)即可得到由△DEF得到△ABC的過程.【詳解】由題可得,由△DEF得到△ABC的過程為:先以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.(答案不唯一)故答案為:先以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,再將得到的三角形沿x軸翻折.【點(diǎn)睛】本題考查了坐標(biāo)與圖形變化﹣旋轉(zhuǎn),平移,對(duì)稱,解題時(shí)需要注意:平移的距離等于對(duì)應(yīng)點(diǎn)連線的長(zhǎng)度,對(duì)稱軸為對(duì)應(yīng)點(diǎn)連線的垂直平分線,旋轉(zhuǎn)角為對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線的夾角的大小.13、(1),,(-1,0);(2)存在P的坐標(biāo)是或;(1)當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(,)或(,)【解析】

(1)將點(diǎn)A和點(diǎn)C的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后令y=0可求得點(diǎn)B的坐標(biāo);(2)分別過點(diǎn)C和點(diǎn)A作AC的垂線,將拋物線與P1,P2兩點(diǎn)先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點(diǎn)坐標(biāo)即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點(diǎn)D的縱坐標(biāo),從而得到點(diǎn)P的縱坐標(biāo),然后由拋物線的解析式可求得點(diǎn)P的坐標(biāo).【詳解】解:(1)∵將點(diǎn)A和點(diǎn)C的坐標(biāo)代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點(diǎn)B的坐標(biāo)為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當(dāng)∠ACP1=90°.由(1)可知點(diǎn)A的坐標(biāo)為(1,0).設(shè)AC的解析式為y=kx﹣1.∵將點(diǎn)A的坐標(biāo)代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點(diǎn)P1的坐標(biāo)為(1,﹣4).②當(dāng)∠P2AC=90°時(shí).設(shè)AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點(diǎn)P2的坐標(biāo)為(﹣2,5).綜上所述,P的坐標(biāo)是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點(diǎn).又∵DF∥OC,∴DF=OC=,∴點(diǎn)P的縱坐標(biāo)是,∴,解得:x=,∴當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(,)或(,).14、【解析】

根據(jù)銀杏樹的單價(jià)為x元,則玉蘭樹的單價(jià)為1.5x元,根據(jù)“某小區(qū)購買了銀杏樹和玉蘭樹共1棵”列出方程即可.【詳解】設(shè)銀杏樹的單價(jià)為x元,則玉蘭樹的單價(jià)為1.5x元,根據(jù)題意,得:1.故答案為:1.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.15、4【解析】

當(dāng)CD∥AB時(shí),PM長(zhǎng)最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長(zhǎng)即可.【詳解】當(dāng)CD∥AB時(shí),PM長(zhǎng)最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M(jìn)為CD中點(diǎn),OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點(diǎn)睛】本題考查矩形的判定和性質(zhì),垂徑定理,平行線的性質(zhì),此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.16、3【解析】

依據(jù)ba=23可設(shè)a=3k,b=2【詳解】∵ba∴可設(shè)a=3k,b=2k,∴aa-b故答案為3.【點(diǎn)睛】本題主要考查了比例的性質(zhì)及見比設(shè)參的數(shù)學(xué)思想,組成比例的四個(gè)數(shù),叫做比例的項(xiàng).兩端的兩項(xiàng)叫做比例的外項(xiàng),中間的兩項(xiàng)叫做比例的內(nèi)項(xiàng).三、解答題(共8題,共72分)17、(1)詳見解析;(2).【解析】

(1)因?yàn)锳C平分∠BCD,∠BCD=120°,根據(jù)角平分線的定義得:∠ACD=∠ACB=60°,根據(jù)同弧所對(duì)的圓周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根據(jù)三個(gè)角是60°的三角形是等邊三角形得△ABD是等邊三角形.(2)作直徑DE,連結(jié)BE,由于△ABD是等邊三角形,則∠BAD=60°,由同弧所對(duì)的圓周角相等,得∠BED=∠BAD=60°.根據(jù)直徑所對(duì)的圓周角是直角得,∠EBD=90°,則∠EDB=30°,進(jìn)而得到DE=2BE.設(shè)EB=x,則ED=2x,根據(jù)勾股定理列方程求解即可.【詳解】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圓周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等邊三角形;(2)連接OB、OD,作OH⊥BD于H,則DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半徑為.【點(diǎn)睛】本題是一道圓的簡(jiǎn)單證明題,以圓的內(nèi)接四邊形為背景,圓的內(nèi)接四邊形的對(duì)角互補(bǔ),在圓中往往通過連結(jié)直徑構(gòu)造直角三角形,再通過三角函數(shù)或勾股定理來求解線段的長(zhǎng)度.18、(1)證明見解析;(2)證明見解析.【解析】

(1)由DE與AB垂直,BF與CD垂直,得到一對(duì)直角相等,再由ABCD為平行四邊形得到AD=BC,對(duì)角相等,利用AAS即可的值;(2)由平行四邊形的對(duì)邊平行得到DC與AB平行,得到∠CDE為直角,利用三個(gè)角為直角的四邊形為矩形即可的值.【詳解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四邊形ABCD為平行四邊形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四邊形ABCD為平行四邊形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,則四邊形BFDE為矩形.【點(diǎn)睛】本題考查1.矩形的判定;2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì).19、-4【解析】分析:第一項(xiàng)根據(jù)乘方的意義計(jì)算,第二項(xiàng)非零數(shù)的零次冪等于1,第三項(xiàng)根據(jù)特殊角銳角三角函數(shù)值計(jì)算,第四項(xiàng)根據(jù)絕對(duì)值的意義化簡(jiǎn).詳解:原式=-4+1-2×+-1=-4點(diǎn)睛:本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握乘方的意義,零指數(shù)冪的意義,及特殊角銳角三角函數(shù),絕對(duì)值的意義是解答本題的關(guān)鍵.20、(1)y=﹣x2﹣x+3;(2)點(diǎn)P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時(shí),點(diǎn)D的坐標(biāo)為(,).【解析】

(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、C的坐標(biāo),由點(diǎn)B所在的位置結(jié)合點(diǎn)B的橫坐標(biāo)可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長(zhǎng)度,進(jìn)而可得出點(diǎn)P的坐標(biāo);(3)連接AC交OD于點(diǎn)F,由點(diǎn)到直線垂線段最短可找出當(dāng)AC⊥OD時(shí)AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點(diǎn)D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)C的坐標(biāo)為(0,3).∵點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點(diǎn)P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點(diǎn)F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點(diǎn)M、N、F重合時(shí),AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,∴,∴設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).∵點(diǎn)D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點(diǎn)D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時(shí),點(diǎn)D的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長(zhǎng);(3)利用相似三角形的性質(zhì)設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).21、(1)-2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論