版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江蘇省無錫市錫中中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.若2<<3,則a的值可以是()A.﹣7 B. C. D.122.估計(jì)5﹣的值應(yīng)在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間3.如圖,AB與⊙O相切于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長(zhǎng)是()A. B. C. D.4.已知,下列說法中,不正確的是()A. B.與方向相同C. D.5.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點(diǎn),P為弧BC上一動(dòng)點(diǎn)(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.436.甲骨文是我國(guó)的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對(duì)稱的是()A. B. C. D.7.據(jù)國(guó)家統(tǒng)計(jì)局2018年1月18日公布,2017年我國(guó)GDP總量為827122億元,首次登上80萬億元的門檻,數(shù)據(jù)827122億元用科學(xué)記數(shù)法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10148.如圖,已知直線AB、CD被直線AC所截,AB∥CD,E是平面內(nèi)任意一點(diǎn)(點(diǎn)E不在直線AB、CD、AC上),設(shè)∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度數(shù)可能是()A.①②③ B.①②④ C.①③④ D.①②③④9.如圖所示的四個(gè)圖案是四國(guó)冬季奧林匹克運(yùn)動(dòng)會(huì)會(huì)徽?qǐng)D案上的一部分圖形,其中為軸對(duì)稱圖形的是()A. B. C. D.10.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個(gè)月多賣10%,設(shè)上個(gè)月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=330二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點(diǎn)A1,B1,C1,D1,E1,F(xiàn)1分別是正六邊形ABCDEF六條邊的中點(diǎn),連接AB1,BC1,CD1,DE1,EF1,F(xiàn)A1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.12.拋擲一枚均勻的硬幣,前3次都正面朝上,第4次正面朝上的概率為________.13.某自然保護(hù)區(qū)為估計(jì)該地區(qū)一種珍稀鳥類的數(shù)量,先捕捉了20只,給它們做上標(biāo)記后放回,過一段時(shí)間待它們完全混合于同類后又捕捉了20只,發(fā)現(xiàn)其中有4只帶有標(biāo)記,從而估計(jì)該地區(qū)此種鳥類的數(shù)量大約有______只14.如果一個(gè)正多邊形每一個(gè)內(nèi)角都等于144°,那么這個(gè)正多邊形的邊數(shù)是____.15.如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長(zhǎng)_____________cm.16.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點(diǎn)E,則陰影部分的面積為_____.17.方程的解是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.(1)求∠BCD的度數(shù).(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)19.(5分)問題探究(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個(gè)不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對(duì)角線AC的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說明理由.20.(8分)如圖1,將長(zhǎng)為10的線段OA繞點(diǎn)O旋轉(zhuǎn)90°得到OB,點(diǎn)A的運(yùn)動(dòng)軌跡為,P是半徑OB上一動(dòng)點(diǎn),Q是上的一動(dòng)點(diǎn),連接PQ.(1)當(dāng)∠POQ=時(shí),PQ有最大值,最大值為;(2)如圖2,若P是OB中點(diǎn),且QP⊥OB于點(diǎn)P,求的長(zhǎng);(3)如圖3,將扇形AOB沿折痕AP折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在OA的延長(zhǎng)線上,求陰影部分面積.21.(10分)某商場(chǎng)甲、乙兩名業(yè)務(wù)員10個(gè)月的銷售額(單位:萬元)如下:甲7.29.69.67.89.346.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根據(jù)上面的數(shù)據(jù),將下表補(bǔ)充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙_______________________________(說明:月銷售額在8.0萬元及以上可以獲得獎(jiǎng)金,7.0~7.9萬元為良好,6.0~6.9萬元為合格,6.0萬元以下為不合格)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:結(jié)論:人員平均數(shù)(萬元)中位數(shù)(萬元)眾數(shù)(萬元)甲8.28.99.6乙8.28.49.7(1)估計(jì)乙業(yè)務(wù)員能獲得獎(jiǎng)金的月份有______個(gè);(2)可以推斷出_____業(yè)務(wù)員的銷售業(yè)績(jī)好,理由為_______.(至少從兩個(gè)不同的角度說明推斷的合理性)22.(10分)如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).(1)求證:≌;(2)當(dāng)時(shí),求四邊形AECF的面積.23.(12分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點(diǎn)D、O;③過C作CE∥AB交MN于點(diǎn)E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長(zhǎng)為18時(shí),求四邊形ADCE的面積.24.(14分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請(qǐng)你用直尺和圓規(guī)作出這個(gè)輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個(gè)輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個(gè)圓形截面的半徑.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項(xiàng).【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項(xiàng),只有選項(xiàng)C符合題意.故選C.【點(diǎn)睛】考查了估算無理數(shù)的大小,估算無理數(shù)大小要用夾逼法.2、C【解析】
先化簡(jiǎn)二次根式,合并后,再根據(jù)無理數(shù)的估計(jì)解答即可.【詳解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值應(yīng)在7和8之間,故選C.【點(diǎn)睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是估算出無理數(shù)的大?。?、B【解析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長(zhǎng)為=π.故選B.點(diǎn)睛:此題考查了切線的性質(zhì),含30度直角三角形的性質(zhì),以及弧長(zhǎng)公式,熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.4、A【解析】
根據(jù)平行向量以及模的定義的知識(shí)求解即可求得答案,注意掌握排除法在選擇題中的應(yīng)用.【詳解】A、,故該選項(xiàng)說法錯(cuò)誤B、因?yàn)?,所以與的方向相同,故該選項(xiàng)說法正確,C、因?yàn)?,所以,故該選項(xiàng)說法正確,D、因?yàn)椋?;故該選項(xiàng)說法正確,故選:A.【點(diǎn)睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.5、D【解析】
如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點(diǎn)睛】本題考查了軸對(duì)稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.6、D【解析】試題分析:A.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D.不是軸對(duì)稱圖形,故本選項(xiàng)正確.故選D.考點(diǎn):軸對(duì)稱圖形.7、B【解析】
由科學(xué)記數(shù)法的定義可得答案.【詳解】解:827122億即82712200000000,用科學(xué)記數(shù)法表示為8.27122×1013,故選B.【點(diǎn)睛】科學(xué)記數(shù)法表示數(shù)的標(biāo)準(zhǔn)形式為(<10且n為整數(shù)).8、D【解析】
根據(jù)E點(diǎn)有4中情況,分四種情況討論分別畫出圖形,根據(jù)平行線的性質(zhì)與三角形外角定理求解.【詳解】E點(diǎn)有4中情況,分四種情況討論如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α過點(diǎn)E2作AB的平行線,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度數(shù)可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故選D.【點(diǎn)睛】此題主要考查平行線的性質(zhì)與外角定理,解題的關(guān)鍵是根據(jù)題意分情況討論.9、D【解析】
根據(jù)軸對(duì)稱圖形的概念求解.【詳解】解:根據(jù)軸對(duì)稱圖形的概念,A、B、C都不是軸對(duì)稱圖形,D是軸對(duì)稱圖形.
故選D.【點(diǎn)睛】本題主要考查軸對(duì)稱圖形,軸對(duì)稱圖形的判斷方法:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形10、D【解析】解:設(shè)上個(gè)月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
設(shè)正六邊形ABCDEF的邊長(zhǎng)為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長(zhǎng),根據(jù)S六邊形GHIJKI:S六邊形ABCDEF=()2,計(jì)算即可;【詳解】設(shè)正六邊形ABCDEF的邊長(zhǎng)為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長(zhǎng)線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,F(xiàn)M=5a,在Rt△A1FM中,F(xiàn)A1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F(xiàn)1L=a,根據(jù)對(duì)稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.【點(diǎn)睛】本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會(huì)利用參數(shù)解決問題.12、【解析】
根據(jù)概率的計(jì)算方法求解即可.【詳解】∵第4次拋擲一枚均勻的硬幣時(shí),正面和反面朝上的概率相等,∴第4次正面朝上的概率為.故答案為:.【點(diǎn)睛】此題考查了概率公式的計(jì)算方法,如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.13、1【解析】
求出樣本中有標(biāo)記的所占的百分比,再用樣本容量除以百分比即可解答.【詳解】解:
只.
故答案為:1.【點(diǎn)睛】本題考查的是通過樣本去估計(jì)總體,總體百分比約等于樣本百分比.14、1【解析】
設(shè)正多邊形的邊數(shù)為n,然后根據(jù)多邊形的內(nèi)角和公式列方程求解即可.【詳解】解:設(shè)正多邊形的邊數(shù)為n,由題意得,=144°,解得n=1.故答案為1.【點(diǎn)睛】本題考查了多邊形的內(nèi)角與外角,熟記公式并準(zhǔn)確列出方程是解題的關(guān)鍵.15、36.【解析】試題分析:∵△AFE和△ADE關(guān)于AE對(duì)稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設(shè)EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長(zhǎng)=8×2+10×2=36.考點(diǎn):折疊的性質(zhì);矩形的性質(zhì);銳角三角函數(shù);勾股定理.16、【解析】【分析】連接半徑和弦AE,根據(jù)直徑所對(duì)的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長(zhǎng),所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因?yàn)镺A=OB,所以△OBE的面積是△ABE面積的一半,可得結(jié)論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點(diǎn)睛】本題考查了扇形的面積計(jì)算、平行四邊形的性質(zhì),含30度角的直角三角形的性質(zhì)等,求出扇形OBE的面積和△ABE的面積是解本題的關(guān)鍵.17、.【解析】
根據(jù)解分式方程的步驟依次計(jì)算可得.【詳解】解:去分母,得:,解得:,當(dāng)時(shí),,所以是原分式方程的解,故答案為:.【點(diǎn)睛】本題主要考查解分式方程,解題的關(guān)鍵是熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗(yàn);④得出結(jié)論.三、解答題(共7小題,滿分69分)18、(1)38°;(2)20.4m.【解析】
(1)過點(diǎn)C作CE與BD垂直,根據(jù)題意確定出所求角度數(shù)即可;(2)在直角三角形CBE中,利用銳角三角函數(shù)定義求出BE的長(zhǎng),在直角三角形CDE中,利用銳角三角函數(shù)定義求出DE的長(zhǎng),由BE+DE求出BD的長(zhǎng),即為教學(xué)樓的高.【詳解】(1)過點(diǎn)C作CE⊥BD,則有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由題意得:CE=AB=30m,在Rt△CBE中,BE=CE?tan20°≈10.80m,在Rt△CDE中,DE=CD?tan18°≈9.60m,∴教學(xué)樓的高BD=BE+DE=10.80+9.60≈20.4m,則教學(xué)樓的高約為20.4m.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題,正確添加輔助線構(gòu)建直角三角形、熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.19、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】
(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進(jìn)而得到EF=FG問題即可解決;(2)將△ABD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當(dāng)D、C、E三點(diǎn)共線時(shí),DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點(diǎn)E作EF⊥BC于點(diǎn)F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點(diǎn)D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長(zhǎng)CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當(dāng)D、C、E三點(diǎn)共線時(shí),DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點(diǎn)E作EF⊥BC于點(diǎn)F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點(diǎn)D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì).20、(1);(2);(3)【解析】
(1)先判斷出當(dāng)PQ取最大時(shí),點(diǎn)Q與點(diǎn)A重合,點(diǎn)P與點(diǎn)B重合,即可得出結(jié)論;(2)先判斷出∠POQ=60°,最后用弧長(zhǎng)用弧長(zhǎng)公式即可得出結(jié)論;(3)先在Rt△B'OP中,OP2+=,解得OP=,最后用面積的和差即可得出結(jié)論.【詳解】解:(1)∵P是半徑OB上一動(dòng)點(diǎn),Q是上的一動(dòng)點(diǎn),∴當(dāng)PQ取最大時(shí),點(diǎn)Q與點(diǎn)A重合,點(diǎn)P與點(diǎn)B重合,此時(shí),∠POQ=90°,PQ=,故答案為:90°,10;(2)解:如圖,連接OQ,∵點(diǎn)P是OB的中點(diǎn),∴OP=OB=OQ.∵QP⊥OB,∴∠OPQ=90°在Rt△OPQ中,cos∠QOP=,∴∠QOP=60°,∴l(xiāng)BQ;(3)由折疊的性質(zhì)可得,,在Rt△B'OP中,OP2+=,解得OP=,S陰影=S扇形AOB﹣2S△AOP=.【點(diǎn)睛】此題是圓的綜合題,主要考查了圓的性質(zhì),弧長(zhǎng)公式,扇形的面積公式,熟記公式是解本題的關(guān)鍵.21、填表見解析;(1)6;(2)甲;甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.【解析】
(1)月銷售額在8.0萬元及以上可以獲得獎(jiǎng)金,去銷售額中找到乙大于8.0的個(gè)數(shù)即可解題,(2)根據(jù)中位數(shù)和平均數(shù)即可解題.【詳解】解:如圖,銷售額數(shù)量x人員4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙013024(1)估計(jì)乙業(yè)務(wù)員能獲得獎(jiǎng)金的月份有6個(gè);(2)可以推斷出甲業(yè)務(wù)員的銷售業(yè)績(jī)好,理由為:甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.故答案為0,1,3,0,2,4;6;甲,甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.【點(diǎn)睛】本題考查了統(tǒng)計(jì)的相關(guān)知識(shí),眾數(shù),平均數(shù)的應(yīng)用,屬于簡(jiǎn)單題,將圖表信息轉(zhuǎn)換成有用信息是解題關(guān)鍵.22、(1)見解析;(2)【解析】
(1)根據(jù)平行四邊形的性質(zhì)得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據(jù)全等三角形的判定推出即可;
(2)求出△ABE是等邊三角形,求出高AH的長(zhǎng),再求出面積即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點(diǎn)E、F分別是BC、AD的中點(diǎn),∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點(diǎn)E、F分別是BC、AD的中點(diǎn),,∴,,∴,,∴四邊形AE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度大理石墓碑設(shè)計(jì)與制作合同3篇
- 2024年03月中信銀行2024年招考工作人員筆試歷年參考題庫附帶答案詳解
- 2024年中國(guó)無縫矩形管市場(chǎng)調(diào)查研究報(bào)告
- 2024年03月黑龍江屆中國(guó)民生銀行畢業(yè)生“未來銀行家”哈爾濱分行春季校園招考筆試歷年參考題庫附帶答案詳解
- 2024年中國(guó)拖拉機(jī)后蓋總成市場(chǎng)調(diào)查研究報(bào)告
- 2025年度大氣污染防治技術(shù)改造項(xiàng)目合同2篇
- 2025年智能農(nóng)業(yè)環(huán)境監(jiān)測(cè)與控制合同
- 2024年03月重慶2024年華夏銀行重慶分行社會(huì)招考(31)筆試歷年參考題庫附帶答案詳解
- 衛(wèi)生管理培訓(xùn)課程設(shè)計(jì)
- 素描教學(xué)課程設(shè)計(jì)
- GB/T 11085-1989散裝液態(tài)石油產(chǎn)品損耗
- 紫外線燈管強(qiáng)度監(jiān)測(cè)表
- 市場(chǎng)營(yíng)銷中心項(xiàng)目建設(shè)方案
- 質(zhì)量信得過班組創(chuàng)建計(jì)劃
- 浙江英語中考作文范文10篇
- 遼寧大學(xué)2023年畢業(yè)生就業(yè)質(zhì)量報(bào)告(同名21742)
- 新聞學(xué)概論重點(diǎn)總結(jié)
- 制袋機(jī)的基礎(chǔ)知識(shí)課件
- 電力排管工程施工組織方案
- 2022年中考英語復(fù)習(xí)新題速遞之選句補(bǔ)全短文4
- 樁基原始記錄表
評(píng)論
0/150
提交評(píng)論