版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國(guó)古代數(shù)學(xué)名著《數(shù)書(shū)九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸2.函數(shù)滿(mǎn)足對(duì)任意都有成立,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),,則的值為()A.0 B.2 C.4 D.13.若直線(xiàn)與圓相交所得弦長(zhǎng)為,則()A.1 B.2 C. D.34.的展開(kāi)式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.805.已知、分別為雙曲線(xiàn):(,)的左、右焦點(diǎn),過(guò)的直線(xiàn)交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,,則的離心率為()A.2 B. C. D.6.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線(xiàn)在點(diǎn),處的切線(xiàn)重合,則實(shí)數(shù)的最小值是()A. B. C. D.17.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.8.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.9.函數(shù)在的圖象大致為()A. B.C. D.10.將函數(shù)的圖象分別向右平移個(gè)單位長(zhǎng)度與向左平移(>0)個(gè)單位長(zhǎng)度,若所得到的兩個(gè)圖象重合,則的最小值為()A. B. C. D.11.已知等比數(shù)列滿(mǎn)足,,等差數(shù)列中,為數(shù)列的前項(xiàng)和,則()A.36 B.72 C. D.12.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若關(guān)于的方程有實(shí)數(shù)解,則實(shí)數(shù)的取值范圍_____.14.已知數(shù)列遞增的等比數(shù)列,若,,則______.15.在中,內(nèi)角所對(duì)的邊分別是.若,,則__,面積的最大值為_(kāi)__.16.已知全集,,則________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大小;(2)若,且直線(xiàn)與平面所成角為,求的值.18.(12分)等差數(shù)列的前項(xiàng)和為,已知,.(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和為;(Ⅱ)設(shè)為數(shù)列的前項(xiàng)的和,求證:.19.(12分)已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),,.(1)求點(diǎn)的軌跡的方程;(2)過(guò)點(diǎn)且斜率存在的直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),,求的取值范圍.20.(12分)如圖,D是在△ABC邊AC上的一點(diǎn),△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長(zhǎng).21.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.22.(10分)已知函數(shù)(1)求單調(diào)區(qū)間和極值;(2)若存在實(shí)數(shù),使得,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點(diǎn):1.實(shí)際應(yīng)用問(wèn)題;2.圓臺(tái)的體積.2、C【解析】
根據(jù)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),所以的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因?yàn)?,所?因?yàn)椋?,所?故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿(mǎn)足,那么是周期為的周期函數(shù),本題屬于中檔題.3、A【解析】
將圓的方程化簡(jiǎn)成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因?yàn)橹本€(xiàn)與圓相交所得弦長(zhǎng)為,所以直線(xiàn)過(guò)圓心,得,即.故選:A【點(diǎn)睛】本題考查了根據(jù)垂徑定理求解直線(xiàn)中參數(shù)的方法,屬于基礎(chǔ)題.4、B【解析】
展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【詳解】由題意,展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開(kāi)式中含的項(xiàng)的系數(shù)為.故選:B【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.5、D【解析】
作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1A=x,根據(jù)雙曲線(xiàn)定義可得x=2a,再由勾股定理可得到c2=7a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設(shè)F1A=x,則由雙曲線(xiàn)定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點(diǎn)睛】本題考查雙曲線(xiàn)定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題.對(duì)于圓錐曲線(xiàn)中求離心率的問(wèn)題,關(guān)鍵是列出含有中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線(xiàn)的定義對(duì)方程進(jìn)行整理,從而求出離心率.6、B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫(xiě)出在兩點(diǎn)處的切線(xiàn)方程,再利用兩直線(xiàn)斜率相等且縱截距相等,列出關(guān)系樹(shù),從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線(xiàn)方程為;在處的切線(xiàn)方程為.由兩切線(xiàn)重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類(lèi)與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.7、B【解析】
每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿(mǎn)足,則,,.故選:B.【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通過(guò)數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng).8、C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.9、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于??碱}.10、B【解析】
首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個(gè)單位長(zhǎng)度后,所得的兩個(gè)圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時(shí),最小值為,故選B.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡(jiǎn)單題目.11、A【解析】
根據(jù)是與的等比中項(xiàng),可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿(mǎn)足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點(diǎn)睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,是中檔題.12、A【解析】
對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)椋詚的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過(guò)程要注意.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出,從而得函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).即可得的最大值為,令,得函數(shù)取得最小值,由有實(shí)數(shù)解,,進(jìn)而得實(shí)數(shù)的取值范圍.【詳解】解:,當(dāng)時(shí),;當(dāng)時(shí),;函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).所以的最大值為,令,所以當(dāng)時(shí),函數(shù)取得最小值,又因?yàn)榉匠逃袑?shí)數(shù)解,那么,即,所以實(shí)數(shù)的取值范圍是:.故答案為:【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問(wèn)題,導(dǎo)數(shù)的應(yīng)用,屬于中檔題.14、【解析】
,建立方程組,且,求出,進(jìn)而求出的公比,即可求出結(jié)論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.
故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)、通項(xiàng)公式,屬于基礎(chǔ)題.15、1【解析】
由正弦定理,結(jié)合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因?yàn)?,所以由正弦定理可得,所?所以,當(dāng),即時(shí),三角形面積最大.故答案為(1).1(2).【點(diǎn)睛】本題主要考查解三角形的問(wèn)題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎(chǔ)題型.16、【解析】
利用集合的補(bǔ)集運(yùn)算即可求解.【詳解】由全集,,所以.故答案為:【點(diǎn)睛】本題考查了集合的補(bǔ)集運(yùn)算,需理解補(bǔ)集的概念,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)分別取的中點(diǎn)為,易得兩兩垂直,以所在直線(xiàn)為軸建立空間直角坐標(biāo)系,易得為平面的法向量,只需求出平面的法向量為,再利用計(jì)算即可;(2)求出,利用計(jì)算即可.【詳解】(1)分別取的中點(diǎn)為,連結(jié).因?yàn)椤?,所以?因?yàn)?,所?因?yàn)閭?cè)面為等邊三角形,所以又因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,所以?xún)蓛纱怪?以為空間坐標(biāo)系的原點(diǎn),分別以所在直線(xiàn)為軸建立如圖所示的空間直角坐標(biāo)系,因?yàn)?,則,,.設(shè)平面的法向量為,則,即.取,則,所以.又為平面的法向量,設(shè)平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線(xiàn)與平面所成角為,所以,即,即,化簡(jiǎn)得,所以,符合題意.【點(diǎn)睛】本題考查利用向量坐標(biāo)法求面面角、線(xiàn)面角,涉及到面面垂直的性質(zhì)定理的應(yīng)用,做好此類(lèi)題的關(guān)鍵是準(zhǔn)確寫(xiě)出點(diǎn)的坐標(biāo),是一道中檔題.18、(Ⅰ),(Ⅱ)見(jiàn)解析【解析】
(Ⅰ)根據(jù)等差數(shù)列公式直接計(jì)算得到答案.(Ⅱ),根據(jù)裂項(xiàng)求和法計(jì)算得到得到證明.【詳解】(Ⅰ)等差數(shù)列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點(diǎn)睛】本題考查了等差數(shù)列的基本量的計(jì)算,裂項(xiàng)求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.19、(1)(2)【解析】
(1)設(shè)坐標(biāo)后根據(jù)向量的坐標(biāo)運(yùn)算即可得到軌跡方程.(2)聯(lián)立直線(xiàn)和橢圓方程,用坐標(biāo)表示出,得到,所以,代入韋達(dá)定理即可求解.【詳解】(1)設(shè),,則,設(shè),由得.又由于,化簡(jiǎn)得的軌跡的方程為.(2)設(shè)直線(xiàn)的方程為,與的方程聯(lián)立,消去得,,設(shè),,則,,由已知,,則,故直線(xiàn).,令,則,由于,,.所以,的取值范圍為.【點(diǎn)睛】此題考查軌跡問(wèn)題,橢圓和直線(xiàn)相交,注意坐標(biāo)表示向量進(jìn)行轉(zhuǎn)化的處理技巧,屬于較難題目.20、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點(diǎn)睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識(shí)記公式,屬中檔題.21、(1)當(dāng)時(shí),遞增區(qū)間時(shí),無(wú)遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2)或.【解析】
(1)求出,對(duì)分類(lèi)討論,先考慮(或)恒成立的范圍,并以此作為的分類(lèi)標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個(gè)實(shí)數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時(shí),恒成立,當(dāng)時(shí),,綜上,當(dāng)時(shí),遞增區(qū)間時(shí),無(wú)遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2),令,原方程只有一個(gè)解,只需只有一個(gè)解,即求只有一個(gè)零點(diǎn)時(shí),的取值范圍,由(1)得當(dāng)時(shí),在單調(diào)遞增,且,函數(shù)只有一個(gè)零點(diǎn),原方程只有一個(gè)解,當(dāng)時(shí),由(1)得在出取得極小值,也是最小值,當(dāng)時(shí),,此時(shí)函數(shù)只有一個(gè)零點(diǎn),原方程只有一個(gè)解,當(dāng)且遞增區(qū)間時(shí),遞減區(qū)間時(shí);,當(dāng),有兩個(gè)零點(diǎn),即原方程有兩個(gè)解,不合題意,所以的取值范圍是或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點(diǎn)、極值最值,考查分類(lèi)討論和等價(jià)轉(zhuǎn)化思想,屬于中檔題.22、(1)時(shí),函數(shù)單調(diào)遞增,,函數(shù)單調(diào)遞減,;(2)見(jiàn)解析【解析】
(1)求出函數(shù)的定義域與
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程測(cè)量勞動(dòng)合同
- 出口貨物報(bào)關(guān)代理合同
- 正式公司轉(zhuǎn)讓合同格式
- 2024年廣告位合同范本
- 2024貸款還款協(xié)議書(shū)
- 家庭裝修項(xiàng)目協(xié)議書(shū)樣本
- 2024年單位租車(chē)協(xié)議書(shū)樣本
- 建設(shè)工程地基處理協(xié)議書(shū)
- 權(quán)威委托代理合同范文大全
- 房屋拆遷合同經(jīng)典版本
- 北師大版八年級(jí)數(shù)學(xué)上冊(cè) 數(shù)學(xué)上學(xué)期作業(yè)設(shè)計(jì)勾股定理 實(shí)數(shù) 含學(xué)生版作業(yè)及答案
- 形勢(shì)與政策(吉林大學(xué))智慧樹(shù)知到答案2024年吉林大學(xué)
- 2024年湖南金葉煙草薄片有限責(zé)任公司招聘筆試參考題庫(kù)含答案解析
- 《思想道德與法治》課件第四章明確價(jià)值要求踐行價(jià)值準(zhǔn)則第三節(jié)積極踐行社會(huì)主義核心價(jià)值觀
- 年產(chǎn)08萬(wàn)噸發(fā)泡聚苯乙烯聚合工段工藝設(shè)計(jì)設(shè)計(jì)
- sup25改性改性目標(biāo)配合比(玄武巖)
- 圖書(shū)館本科教學(xué)水平合格評(píng)估匯報(bào)
- 有機(jī)物的可生化性參照表
- 安全飲水初步設(shè)計(jì)編制大綱
- 整式知識(shí)點(diǎn)總結(jié)
- 《制作洋蔥表皮細(xì)胞臨時(shí)裝片》教學(xué)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論