版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北保定滿城區(qū)龍門中學數學九上期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.我校小偉同學酷愛健身,一天去爬山鍛煉,在出發(fā)點C處測得山頂部A的仰角為30度,在爬山過程中,每一段平路(CD、EF、GH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點B(B、C、D同一水平線上),斜坡AB的坡度為2:1,且AB長為900,其中小偉走平路的速度為65.7米/分,走上坡路的速度為42.3米/分.則小偉從C出發(fā)到坡頂A的時間為()(圖中所有點在同一平面內≈1.41,≈1.73)A.60分鐘 B.70分鐘 C.80分鐘 D.90分鐘2.學生作業(yè)本每頁大約為7.5忽米(1厘米=1000忽米),請用科學計數法將7.5忽米記為米,則正確的記法為()A.7.5×105米 B.0.75×106米 C.0.75×10-4米 D.3.若一個扇形的圓心角是45°,面積為,則這個扇形的半徑是()A.4 B. C. D.4.如圖,⊙中,,則等于()A. B. C. D.5.體育課上,某班兩名同學分別進行5次短跑訓練,要判斷哪一名同學的成績比較穩(wěn)定,通常需要比較這兩名學生成績的()A.平均數 B.頻數 C.中位數 D.方差6.已知反比例函數的圖象經過點(1,2),則它的圖象也一定經過()A.(1,﹣2) B.(﹣1,2) C.(﹣2,1) D.(﹣1,﹣2)7.函數在同一直角坐標系內的圖象大致是()A. B. C. D.8.如圖,是的直徑,,垂足為點,連接交于點,延長交于點,連接并延長交于點.則下列結論:①;②;③點是的中點.其中正確的是()A.①② B.①③ C.②③ D.①②③9.已知二次函數的圖象如圖所示,下列結論:①;②;③;④.其中正確的結論是()A.①② B.①③ C.①③④ D.①②③10.拋物線y=ax2+bx+c與直線y=ax+c(a≠0)在同一直角坐標系中的圖象可能是()A. B.C. D.11.如圖,二次函數y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結論:①1a﹣b=0;②(a+c)1<b1;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1)1﹣1.其中正確的是()A.①③ B.②③ C.②④ D.③④12.如圖,∠ACB是⊙O的圓周角,若⊙O的半徑為10,∠ACB=45°,則扇形AOB的面積為()A.5π B.12.5π C.20π D.25π二、填空題(每題4分,共24分)13.已知二次函數的自變量與函數的部分對應值列表如下:…-3-2-10……0-3-4-3…則關于的方程的解是______.14.若△ABC∽△A′B′C′,且,△ABC的周長為12cm,則△A′B′C′的周長為_____________.15.拋物線y=x2+2x﹣3的對稱軸是_____.16.如圖,Rt△ABC中,∠ACB=90°,BC=3,tanA=,將Rt△ABC繞點C順時針旋轉90°得到△DEC,點F是DE上一動點,以點F為圓心,FD為半徑作⊙F,當FD=_____時,⊙F與Rt△ABC的邊相切.17.如圖,小華同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,使斜邊DF與地面保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊,,測得邊DF離地面的高度,,則樹AB的高度為_______cm.18.如圖,一艘輪船從位于燈塔的北偏東60°方向,距離燈塔60海里的小島出發(fā),沿正南方向航行一段時間后,到達位于燈塔的南偏東45°方向上的處,這時輪船與小島的距離是__________海里.三、解答題(共78分)19.(8分)解方程(1)x2﹣4x+2=0(2)(x﹣3)2=2x﹣620.(8分)某賓館有客房間供游客居住,當每間客房的定價為每天元時,客房恰好全部住滿;如果每間客房每天的定價每增加元,就會減少間客房出租.設每間客房每天的定價增加元,賓館出租的客房為間.求:關于的函數關系式;如果某天賓館客房收入元,那么這天每間客房的價格是多少元?21.(8分)如圖,已知在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC邊于點D,以AB上點O為圓心作⊙O,使⊙O經過點A和點D.(1)判斷直線BC與⊙O的位置關系,并說明理由;(2)若AE=6,劣弧DE的長為π,求線段BD,BE與劣弧DE所圍成的陰影部分的面積(結果保留根號和π).22.(10分)如圖,在鈍角中,點為上的一個動點,連接,將射線繞點逆時針旋轉,交線段于點.已知∠C=30°,CA=2cm,BC=7cm,設B,P兩點間的距離為xcm,A,D兩點間的距離ycm.小牧根據學習函數的經驗,對函數隨自變量的變化而變化的規(guī)律進行了探究.下面是小牧探究的過程,請補充完整:(1)根據圖形.可以判斷此函數自變量X的取值范圍是;(2)通過取點、畫圖、測量,得到了與的幾組值,如下表:0.511.021.913.4734.164.473.973.222.421.66a2.022.50通過測量??梢缘玫絘的值為;(3)在平而直角坐標系xOy中.描出上表中以各對對應值為坐標的點,畫出該函數的圖象;(4)結合畫出的函數圖象,解決問題:當AD=3.5cm時,BP的長度約為cm.23.(10分)某水果超市第一次花費2200元購進甲、乙兩種水果共350千克.已知甲種水果進價每千克5元,售價每千克10元;乙種水果進價每千克8元,售價每千克12元.(1)第一次購進的甲、乙兩種水果各多少千克?(2)由于第一次購進的水果很快銷售完畢,超市決定再次購進甲、乙兩種水果,它們的進價不變.若要本次購進的水果銷售完畢后獲得利潤2090元,甲種水果進貨量在第一次進貨量的基礎上增加了2m%,售價比第一次提高了m%;乙種水果的進貨量為100千克,售價不變.求m的值.24.(10分)如圖,四邊形內接于,對角線為的直徑,過點作的垂線交的延長線于點,過點作的切線,交于點.(1)求證:;(2)填空:①當的度數為時,四邊形為正方形;②若,,則四邊形的最大面積是.25.(12分)某校根據課程設置要求,開設了數學類拓展性課程,為了解學生最喜歡的課程內容,隨機抽取了部分學生進行問卷調查(每人必須且只選中其中一項),并將統(tǒng)計結果繪制成如下統(tǒng)計圖(不完整),請根據圖中信息回答問題:(1)求m,n的值.(2)補全條形統(tǒng)計圖.(3)該校共有1200名學生,試估計全校最喜歡“數學史話”的學生人數.26.先化簡,再求值:,期中.
參考答案一、選擇題(每題4分,共48分)1、C【分析】如圖,作AP⊥BC于P,延長AH交BC于Q,延長EF交AQ于T.想辦法求出AQ、CQ即可解決問題.【詳解】解:如圖,作AP⊥BC于P,延長AH交BC于Q,延長EF交AQ于T.由題意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小偉從C出發(fā)到坡頂A的時間=≈80(分鐘),故選:C.【點睛】本題考查了解直角三角形的應用,熟練掌握并靈活運用是解題的關鍵.2、D【分析】小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:7.5忽米用科學記數法表示7.5×10-5米.
故選D.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.3、A【分析】根據扇形面積公式計算即可.【詳解】解:設扇形的半徑為為R,由題意得,解得R=4.故選A.【點睛】本題考查了扇形的面積公式,R是扇形半徑,n是弧所對圓心角度數,π是圓周率,L是扇形對應的弧長.那么扇形的面積為:.4、C【分析】直接根據圓周角定理解答即可.【詳解】解:∵∠ABC與∠AOC是一條弧所對的圓周角與圓心角,∠ABC=45°,
∴∠AOC=2∠ABC=2×45°=90°.
故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、D【分析】要判斷成績的穩(wěn)定性,一般是通過比較兩者的方差實現,據此解答即可.【詳解】解:要判斷哪一名同學的成績比較穩(wěn)定,通常需要比較這兩名學生成績的方差.故選:D.【點睛】本題考查了統(tǒng)計量的選擇,屬于基本題型,熟知方差的意義是解題關鍵.6、D【分析】根據反比例函數圖象和性質即可解答.先判斷出反比例函數圖象的一分支所在象限,即可得到另一分支所在象限.【詳解】解:由于點(1,2)在第一象限,則反比例函數的一支在第一象限,另一支必過第三象限.第三象限內點的坐標符號為(﹣,﹣)故選:D.【點睛】此題主要考查反比例函數的圖像與性質,解題的關鍵是熟知反比例函數圖像的對稱性.7、C【分析】根據a、b的符號,針對二次函數、一次函數的圖象位置,開口方向,分類討論,逐一排除.【詳解】當a>0時,二次函數的圖象開口向上,一次函數的圖象經過一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數的圖象可知,對稱軸x=->0,且a>0,則b<0,但B中,一次函數a>0,b>0,排除B.故選C.8、A【分析】根據“同弧所對圓周角相等”以及“等角的余角相等”即可解決問題①,運用相似三角形的判定定理證明△EBC∽△BDC即可得到②,運用反證法來判定③即可.【詳解】證明:①∵BC⊥AB于點B,∴∠CBD+∠ABD=90°,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正確;②∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴,故②正確;③∵∠ADB=90°,∴∠BDF=90°,∵DE為直徑,∴∠EBD=90°,∴∠EBD=∠BDF,∴DF∥BE,假設點F是BC的中點,則點D是EC的中點,∴ED=DC,∵ED是直徑,長度不變,而DC的長度是不定的,∴DC不一定等于ED,故③是錯誤的.故選:A.【點睛】本題考查了圓周角的性質,余角的性質,相似三角形的判定與性質,平行線的判定等知識,知識涉及比較多,但不難,熟練掌握基礎的定理性質是解題的關鍵.9、C【分析】由拋物線開口方向得到a>0,由拋物線的對稱軸方程得到b=-2a,則可對①②進行判斷;利用判別式的意義可對③進行判斷;利用平方差公式得到(a+b)2-b2=(a+b-b)(a+b+b),然后把b=-2a代入可對④進行判斷.【詳解】∵拋物線開口向上,
∴a>0,
∵拋物線的對稱軸為直線x=-=1,
∴b=-2a<0,所以①正確;
∴b+2a=0,所以②錯誤;
∵拋物線與x軸有2個交點,
∴△=b2-4ac>0,所以③正確;
∵(a+b)2-b2=(a+b-b)(a+b+b)=a(a+2b)=a(a-4a)=-3a2<0,
∴(a+b)2<b2,所以④正確.
故選:C.【點睛】考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置.當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c).拋物線與x軸交點個數由△決定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.10、D【分析】可先由一次函數y=ax+c圖象得到字母系數的正負,再與二次函數y=ax2+bx+c的圖象相比較看是否一致.【詳解】A.一次函數y=ax+c與y軸交點應為(0,c),二次函數y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B.由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C.由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D.由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選:D.【點睛】本題考查了拋物線和直線的性質,用假設法來解答這種數形結合題是一種很好的方法.11、D【解析】分析:根據二次函數圖象與系數之間的關系即可求出答案.詳解:①圖象與x軸交于點A(﹣1,0),B(3,0),∴二次函數的圖象的對稱軸為x==1,∴=1,∴1a+b=0,故①錯誤;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)1=b1,故②錯誤;③由圖可知:當﹣1<x<3時,y<0,故③正確;④當a=1時,∴y=(x+1)(x﹣3)=(x﹣1)1﹣4將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1﹣1)1﹣4+1=(x﹣1)1﹣1,故④正確;故選:D.點睛:本題考查二次函數圖象的性質,解題的關鍵是熟知二次函數的圖象與系數之間的關系,本題屬于中等題型.12、D【分析】首先根據圓周角的度數求得圓心角的度數,然后代入扇形的面積公式求解即可.【詳解】解:∵∠ACB=45°,∴∠AOB=90°,∵半徑為10,∴扇形AOB的面積為:=25π,故選:D.【點睛】考查了圓周角定理及扇形的面積公式,解題的關鍵是牢記扇形的面積公式并正確的運算.二、填空題(每題4分,共24分)13、,【分析】首先根據與函數的部分對應值求出二次函數解析式,然后即可得出一元二次方程的解.【詳解】將(0,-3)(-1,-4)(-3,0)代入二次函數,得解得∴二次函數解析式為∴方程為∴方程的解為,故答案為,.【點睛】此題主要考查二次函數與一元二次方程的綜合應用,熟練掌握,即可解題.14、16cm【分析】根據相似三角形周長的比等于相似比求解.【詳解】解:∵△ABC∽△A′B′C′,且,即相似三角形的相似比為,
∵△ABC的周長為12cm
∴△A′B′C′的周長為12÷=16cm.故答案為:16.【點睛】此題考查相似三角形的性質,解題關鍵在于掌握相似三角形周長的比等于相似比.15、x=﹣1【分析】直接利用二次函數對稱軸公式求出答案.【詳解】拋物線y=x2+2x﹣3的對稱軸是:直線x=﹣=﹣=﹣1.故答案為:直線x=﹣1.【點睛】此題主要考查了二次函數的性質,正確記憶二次函數對稱軸公式是解題關鍵.16、或【分析】如圖1,當⊙F與Rt△ABC的邊AC相切時,切點為H,連接FH,則HF⊥AC,解直角三角形得到AC=4,AB=5,根據旋轉的性質得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根據相似三角形的性質得到DF=;如圖2,當⊙F與Rt△ABC的邊AC相切時,延長DE交AB于H,推出點H為切點,DH為⊙F的直徑,根據相似三角形的性質即可得到結論.【詳解】如圖1,當⊙F與Rt△ABC的邊AC相切時,切點為H,連接FH,則HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tanA==,∴AC=4,AB=5,將Rt△ABC繞點C順時針旋轉90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴=,∴=,解得:DF=;如圖2,當⊙F與Rt△ABC的邊AC相切時,延長DE交AB于H,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴點H為切點,DH為⊙F的直徑,∴△DEC∽△DBH,∴=,∴=,∴DH=,∴DF=,綜上所述,當FD=或時,⊙F與Rt△ABC的邊相切,故答案為:或.【點睛】本題考查了切線的判定和性質,相似三角形的判定和性質,旋轉的性質,正確的作出輔助線是解題的關鍵.17、420【分析】先判定△DEF和△DBC相似,然后根據相似三角形對應邊成比例列式求出BC的長,再加上AC即可得解.【詳解】解:在△DEF和△DBC中,∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,∴,解得BC=300cm,∵,∴AB=AC+BC=120+300=420m,即樹高420m.故答案為:420.【點睛】本題考查了相似三角形的應用,主要利用了相似三角形對應邊成比例的性質,比較簡單,判定出△DEF和△DBC相似是解題的關鍵.18、(30+30)【分析】過點C作CD⊥AB,則在Rt△ACD中易得AD的長,再在Rt△BCD中求出BD,相加可得AB的長.【詳解】解:過C作CD⊥AB于D點,由題意可得,
∠ACD=30°,∠BCD=45°,AC=1.
在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC?cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,
∴CD=BD=30,∴AB=AD+BD=30+30.答:此時輪船所在的B處與小島A的距離是(30+30)海里.
故答案為:(30+30).【點睛】此題主要考查了解直角三角形的應用-方向角問題,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.三、解答題(共78分)19、(1)x=2;(2)x=3或x=1.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【詳解】(1)∵x2﹣4x=﹣2,∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2,解得x﹣2=,則x=2;(2)∵(x﹣3)2﹣2(x﹣3)=0,∴(x﹣3)(x﹣1)=0,則x﹣3=0或x﹣1=0,解得x=3或x=1.【點睛】本題考查了解一元二次方程-因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數學轉化思想).也考查了配方法解一元二次方程.20、(1)y=-x+200;(2)這天的每間客房的價格是元或元.【解析】(1)根據題意直接寫出函數關系式,然后整理即可;(2)用每間房的收入(180+x),乘以出租的房間數(-x+200)等于總收入列出方程求解即可.【詳解】(1)設每間客房每天的定價增加x元,賓館出租的客房為y間,根據題意,得:y=200-4×,∴y=-x+200;(2)設每間客房每天的定價增加x元,根據題意,得(180+x)(-x+200)=38400,整理后,得x2-320x+6000=0,解得x1=20,x2=300,當x=20時,x+180=200(元),當x=300時,x+180=480(元),答:這天的每間客房的價格是200元或480元.【點睛】本題主要考查一元二次方程的應用,列一元二次方程,用因式分解法解一元二次方程,解題關鍵在于根據題意準確列出一元二次方程.21、(1)直線BC與⊙O相切,理由詳見解析;(2).【分析】(1)連接OD,由角平分線的定義可得∠DAC=∠DAB,根據等腰三角形的性質可得∠OAD=∠ODA,即可證明OD//AC,根據平行線的性質可得,可得直線BC與⊙O相切;(2)利用弧長公式可求出∠DOE=60°,根據∠DOE的正切可求出BD的長,利用三角形和扇形的面積公式即可得答案.【詳解】(1)直線與⊙O相切,理由如下:連接,∵是的平分線,∴,∵,∴,∴,∴,∴,∴,∴直線與⊙O相切.(2)∵,劣弧的長為,∴,∴∵,∴,∴.∴BE與劣弧DE所圍成的陰影部分的面積為.【點睛】本題考查切線的判定、弧長公式及扇形面積,經過半徑的外端點并且垂直于這條半徑的直線的圓的切線;n°的圓心角所對的弧長為l=(r為半徑);圓心角為n°的扇形的面積為S扇形=(r為半徑);熟練掌握弧長公式及扇形面積公式是解題關鍵.22、(1)0≤x≤5;(2)1.74;(3)見解析;(4)0.8或者4.8.【分析】(1)考慮點P的臨界位置∠APB=60°時,D與B重合,計算出此時的PB長,即可知x的取值范圍;(2)根據圖形測量即可;(3)描點連線即可;(4)畫直線y=3.5與圖象的交點即可觀察出x的值.【詳解】(1)如圖1,當∠APB=60°時,D與B重合,作PE⊥AC于E,∵∠C=30°,∠APB=60°,∴∠CAP=30°,∴PC=AP,∴CE=AE=,∴PC=2,∴PB=5,∴0≤x≤5;(2)測量得a=1.74;(3)如下圖所示,(4觀察圖象可知,當y=3.5時x=0.8或者4.8.【點睛】本題考查了旋轉的性質、等腰三角形的性質以及描點法畫函數圖象,利用圖象求近似值,體現了特殊到一般,再由一般到特殊的思想方法.23、(1)第一次購進甲種水果200千克,購進乙種水果10千克;(2)m的值為1.【分析】(1)設第一次購進甲種水果x千克,購進乙種水果y千克,根據該超市花費2200元購進甲、乙兩種水果共350千克,即可得出關于x,y的二元一次方程組,解之即可得出結論;(2)根據總利潤=每千克的利潤×銷售數量,即可得出關于m的一元二次方程,解之取其正值即可得出結論.【詳解】(1)設第一次購進甲種水果x千克,購進乙種水果y千克,依題意,得:,解得:.答:第一次購進甲種水果200千克,購進乙種水果10千克.(2)依題意,得:[10(1+m%)﹣5]×200(1+2m%)+(12﹣8)×100=2090,整理,得:0.4m2+40m﹣690=0,解得:m1=1,m2=﹣11(不合題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 肇慶學院《管理會計模擬實驗》2023-2024學年第一學期期末試卷
- 企業(yè)員工績效質量個人貢獻度評價體系
- 保險行業(yè)投資分析模板
- 20XX年度績效總結模板
- 房地產經紀操作實務-2019年房地產經紀人協(xié)理《房地產經紀操作實務》真題匯編
- 人資行政崗位述職報告模板
- 有關保護環(huán)境的調查報告
- 二零二五版帶利息支付的商業(yè)匯票貼現合同樣本3篇
- 陜西省西安市部分學校2024-2025學年高一上學期第四次階段性檢測化學試卷(含答案)
- 二零二五年度高速公路鋼筋材料供應協(xié)議3篇
- 宮頸癌篩查及預防講課課件
- 《跟單信用證統(tǒng)一慣例》UCP600中英文對照版
- 2023年數學競賽AMC8試卷(含答案)
- SMA分子檢測進展
- 醫(yī)師定期考核機構信息登記表
- 風力發(fā)電風機拆除方案
- 杭州出租車區(qū)域考試復習備考題庫(含答案)
- 普通高中地理課程標準簡介課件
- 根號2有多大?數學課件
- 醫(yī)院住院醫(yī)師規(guī)范化培訓證明(樣本)
- GB/T 13634-2000試驗機檢驗用測力儀的校準
評論
0/150
提交評論