廣西南寧中學(xué)春季學(xué)期市級(jí)名校2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第1頁
廣西南寧中學(xué)春季學(xué)期市級(jí)名校2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第2頁
廣西南寧中學(xué)春季學(xué)期市級(jí)名校2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第3頁
廣西南寧中學(xué)春季學(xué)期市級(jí)名校2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第4頁
廣西南寧中學(xué)春季學(xué)期市級(jí)名校2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西南寧中學(xué)春季學(xué)期市級(jí)名校2023-2024學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8332.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.3.如圖,△ABC中AB兩個(gè)頂點(diǎn)在x軸的上方,點(diǎn)C的坐標(biāo)是(﹣1,0),以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是()A. B. C. D.4.關(guān)于x的一元二次方程x2+8x+q=0有兩個(gè)不相等的實(shí)數(shù)根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥45.下列圖形是由同樣大小的棋子按照一定規(guī)律排列而成的,其中,圖①中有5個(gè)棋子,圖②中有10個(gè)棋子,圖③中有16個(gè)棋子,…,則圖⑥________中有個(gè)棋子()A.31 B.35 C.40 D.506.第24屆冬奧會(huì)將于2022年在北京和張家口舉行,冬奧會(huì)的項(xiàng)目有滑雪(如跳臺(tái)滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是()A. B. C. D.7.已知圖中所有的小正方形都全等,若在右圖中再添加一個(gè)全等的小正方形得到新的圖形,使新圖形是中心對(duì)稱圖形,則正確的添加方案是()A. B. C. D.8.一個(gè)不透明的布袋里裝有7個(gè)只有顏色不同的球,其中3個(gè)紅球,4個(gè)白球,從布袋中隨機(jī)摸出一個(gè)球,摸出的球是紅球的概率是()A. B. C. D.9.半徑為3的圓中,一條弦長(zhǎng)為4,則圓心到這條弦的距離是()A.3 B.4 C. D.10.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,矩形中,,,將矩形沿折疊,點(diǎn)落在點(diǎn)處.則重疊部分的面積為______.12.將一個(gè)含45°角的三角板,如圖擺放在平面直角坐標(biāo)系中,將其繞點(diǎn)順時(shí)針旋轉(zhuǎn)75°,點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在軸上,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為____________.13.如圖,量角器的0度刻度線為,將一矩形直尺與量角器部分重疊,使直尺一邊與量角器相切于點(diǎn),直尺另一邊交量角器于點(diǎn),,量得,點(diǎn)在量角器上的讀數(shù)為,則該直尺的寬度為____________.14.如圖是一個(gè)立體圖形的三種視圖,則這個(gè)立體圖形的體積(結(jié)果保留π)為______________.15.一個(gè)正四邊形的內(nèi)切圓半徑與外接圓半徑之比為:_________________16.某校組織“優(yōu)質(zhì)課大賽”活動(dòng),經(jīng)過評(píng)比有兩名男教師和兩名女教師獲得一等獎(jiǎng),學(xué)校將從這四名教師中隨機(jī)挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____.17.如圖,設(shè)△ABC的兩邊AC與BC之和為a,M是AB的中點(diǎn),MC=MA=5,則a的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)小強(qiáng)想知道湖中兩個(gè)小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測(cè)點(diǎn)M處,測(cè)得亭A在點(diǎn)M的北偏東30°,亭B在點(diǎn)M的北偏東60°,當(dāng)小明由點(diǎn)M沿小道I向東走60米時(shí),到達(dá)點(diǎn)N處,此時(shí)測(cè)得亭A恰好位于點(diǎn)N的正北方向,繼續(xù)向東走30米時(shí)到達(dá)點(diǎn)Q處,此時(shí)亭B恰好位于點(diǎn)Q的正北方向,根據(jù)以上測(cè)量數(shù)據(jù),請(qǐng)你幫助小強(qiáng)計(jì)算湖中兩個(gè)小亭A、B之間的距離.19.(5分)(1)計(jì)算:;(2)化簡(jiǎn):.20.(8分)如圖,在△ABC中,AB=AC,∠BAC=90°,M是BC的中點(diǎn),延長(zhǎng)AM到點(diǎn)D,AE=AD,∠EAD=90°,CE交AB于點(diǎn)F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度數(shù);(3)用等式表示線段CD和CE之間的數(shù)量關(guān)系,并證明.21.(10分)AB為⊙O直徑,C為⊙O上的一點(diǎn),過點(diǎn)C的切線與AB的延長(zhǎng)線相交于點(diǎn)D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點(diǎn),連接CE,BE,若BE=2,求CE的長(zhǎng).22.(10分)如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),求AE的長(zhǎng).23.(12分)如圖,點(diǎn)A.F、C.D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.24.(14分)在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo)為,且,,我們規(guī)定:如果存在點(diǎn)P,使是以線段MN為直角邊的等腰直角三角形,那么稱點(diǎn)P為點(diǎn)M、N的“和諧點(diǎn)”.(1)已知點(diǎn)A的坐標(biāo)為,①若點(diǎn)B的坐標(biāo)為,在直線AB的上方,存在點(diǎn)A,B的“和諧點(diǎn)”C,直接寫出點(diǎn)C的坐標(biāo);②點(diǎn)C在直線x=5上,且點(diǎn)C為點(diǎn)A,B的“和諧點(diǎn)”,求直線AC的表達(dá)式.(2)⊙O的半徑為r,點(diǎn)為點(diǎn)、的“和諧點(diǎn)”,且DE=2,若使得與⊙O有交點(diǎn),畫出示意圖直接寫出半徑r的取值范圍.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長(zhǎng)至少為83故選C.2、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點(diǎn):簡(jiǎn)單組合體的三視圖.3、D【解析】

設(shè)點(diǎn)B的橫坐標(biāo)為x,然后表示出BC、B′C的橫坐標(biāo)的距離,再根據(jù)位似變換的概念列式計(jì)算.【詳解】設(shè)點(diǎn)B的橫坐標(biāo)為x,則B、C間的橫坐標(biāo)的長(zhǎng)度為﹣1﹣x,B′、C間的橫坐標(biāo)的長(zhǎng)度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點(diǎn)睛】本題考查了位似變換,坐標(biāo)與圖形的性質(zhì),根據(jù)位似變換的定義,利用兩點(diǎn)間的橫坐標(biāo)的距離等于對(duì)應(yīng)邊的比列出方程是解題的關(guān)鍵.4、A【解析】∵關(guān)于x的一元二次方程x2+8x+q=0有兩個(gè)不相等的實(shí)數(shù)根,∴△>0,即82-4q>0,∴q<16,故選A.5、C【解析】

根據(jù)題意得出第n個(gè)圖形中棋子數(shù)為1+2+3+…+n+1+2n,據(jù)此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個(gè),圖2中棋子有10=1+2+3+2×2個(gè),圖3中棋子有16=1+2+3+4+3×2個(gè),…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個(gè),故選C.【點(diǎn)睛】本題考查了圖形的變化規(guī)律,通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.6、B【解析】

先找出滑雪項(xiàng)目圖案的張數(shù),結(jié)合5張形狀、大小、質(zhì)地均相同的卡片,再根據(jù)概率公式即可求解.【詳解】∵有5張形狀、大小、質(zhì)地均相同的卡片,滑雪項(xiàng)目圖案的有高山滑雪和單板滑雪2張,∴從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是.故選B.【點(diǎn)睛】本題考查了簡(jiǎn)單事件的概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.7、B【解析】

觀察圖形,利用中心對(duì)稱圖形的性質(zhì)解答即可.【詳解】選項(xiàng)A,新圖形不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)B,新圖形是中心對(duì)稱圖形,故此選項(xiàng)正確;選項(xiàng)C,新圖形不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)D,新圖形不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;故選B.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的概念,熟知中心對(duì)稱圖形的概念是解決問題的關(guān)鍵.8、B【解析】袋中一共7個(gè)球,摸到的球有7種可能,而且機(jī)會(huì)均等,其中有3個(gè)紅球,因此摸到紅球的概率為,故選B.9、C【解析】如圖所示:過點(diǎn)O作OD⊥AB于點(diǎn)D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.10、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項(xiàng)正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;故選C.二、填空題(共7小題,每小題3分,滿分21分)11、10【解析】

根據(jù)翻折的特點(diǎn)得到,.設(shè),則.在中,,即,解出x,再根據(jù)三角形的面積進(jìn)行求解.【詳解】∵翻折,∴,,又∵,∴,∴.設(shè),則.在中,,即,解得,∴,∴.【點(diǎn)睛】此題主要考查勾股定理,解題的關(guān)鍵是熟知翻折的性質(zhì)及勾股定理的應(yīng)用.12、【解析】

先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標(biāo).【詳解】解:∵∠ACB=45°,∠BCB′=75°,

∴∠ACB′=120°,

∴∠ACO=60°,

∴∠OAC=30°,

∴AC=2OC,

∵點(diǎn)C的坐標(biāo)為(1,0),

∴OC=1,

∴AC=2OC=2,

∵△ABC是等腰直角三角形,∴B′點(diǎn)的坐標(biāo)為【點(diǎn)睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標(biāo)與圖形變換,同時(shí)也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線段的長(zhǎng)度,即可解決問題.13、【解析】

連接OC,OD,OC與AD交于點(diǎn)E,根據(jù)圓周角定理有根據(jù)垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點(diǎn)E,直尺的寬度:故答案為【點(diǎn)睛】考查垂徑定理,熟記垂徑定理是解題的關(guān)鍵.14、250【解析】

從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h(yuǎn)=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點(diǎn)睛】考查學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查;圓柱體積公式=底面積×高.15、2【解析】

如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,利用正方形的性質(zhì)得到OH為正方形ABCD的內(nèi)切圓的半徑,∠OAB=45°,然后利用等腰直角三角形的性質(zhì)得OA=2OH即可解答.【詳解】解:如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,則OH為正方形ABCD的內(nèi)切圓的半徑,∵∠OAB=45°,∴OA=2OH,∴OHOA即一個(gè)正四邊形的內(nèi)切圓半徑與外接圓半徑之比為22故答案為:22【點(diǎn)睛】本題考查了正多邊形與圓的關(guān)系:把一個(gè)圓分成n(n是大于2的自然數(shù))等份,依次連接各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓叫做這個(gè)正多邊形的外接圓.理解正多邊形的有關(guān)概念.16、【解析】

根據(jù)列表法求出所有可能及可得出挑選的兩位教師恰好是一男一女的結(jié)果數(shù)而利用概率公式計(jì)算可得.【詳解】解:所有可能的結(jié)果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同.挑選的兩位教師恰好是一男一女的結(jié)果有8種,所以其概率為挑選的兩位教師恰好是一男一女的概率為=,故答案為.【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.17、10<a≤10.【解析】

根據(jù)題設(shè)知三角形ABC是直角三角形,由勾股定理求得AB的長(zhǎng)度及由三角形的三邊關(guān)系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關(guān)系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M(jìn)是AB的中點(diǎn),MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令A(yù)C=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個(gè)實(shí)根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點(diǎn)睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強(qiáng),解題時(shí),還利用了一元二次方程的根與系數(shù)的關(guān)系、根的判別式的知識(shí)點(diǎn).三、解答題(共7小題,滿分69分)18、1m【解析】

連接AN、BQ,過B作BE⊥AN于點(diǎn)E.在Rt△AMN和在Rt△BMQ中,根據(jù)三角函數(shù)就可以求得AN,BQ,求得NQ,AE的長(zhǎng),在直角△ABE中,依據(jù)勾股定理即可求得AB的長(zhǎng).【詳解】連接AN、BQ,∵點(diǎn)A在點(diǎn)N的正北方向,點(diǎn)B在點(diǎn)Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,過B作BE⊥AN于點(diǎn)E,則BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中兩個(gè)小亭A、B之間的距離為1米.【點(diǎn)睛】本題考查勾股定理、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題.19、(1)4+;(2).【解析】

(1)根據(jù)冪的乘方、零指數(shù)冪、特殊角的三角函數(shù)值和絕對(duì)值可以解答本題;(3)根據(jù)分式的減法和除法可以解答本題.【詳解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【點(diǎn)睛】本題考查分式的混合運(yùn)算、實(shí)數(shù)的運(yùn)算、零指數(shù)冪、特殊角的三角函數(shù)值和絕對(duì)值,解答本題的關(guān)鍵是明確它們各自的計(jì)算方法.20、(1)45;(2)90°;(3)見解析.【解析】

(1)根據(jù)等腰三角形三線合一可得結(jié)論;(2)連接DB,先證明△BAD≌△CAD,得BD=CD=DF,則∠DBA=∠DFB=∠DCA,根據(jù)四邊形內(nèi)角和與平角的定義可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)證明△EAF≌△DAF,得DF=EF,由②可知,可得結(jié)論.【詳解】(1)解:∵AB=AC,M是BC的中點(diǎn),∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案為:45(2)解:如圖,連接DB.∵AB=AC,∠BAC=90°,M是BC的中點(diǎn),∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.(3).證明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.∴DF=EF.由②可知,.∴.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形的性質(zhì),解題關(guān)鍵在于掌握判定定理及性質(zhì).21、(2)見解析;(2)2+.【解析】

(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對(duì)等邊證明;

(2)連接AE,過點(diǎn)B作BF⊥CE于點(diǎn)F,根據(jù)勾股定理計(jì)算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點(diǎn)B作BF⊥CE于點(diǎn)F,∵E是AB中點(diǎn),∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理、勾股定理,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.22、(1);(2)詳見解析;(3)AE=.【解析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對(duì)應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長(zhǎng).【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點(diǎn)O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時(shí),S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),【點(diǎn)睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.23、(1)見解析(2)當(dāng)AF=時(shí),四邊形BCEF是菱形.【解析】

(1)由AB=DE,∠A=∠D,AF=DC,根據(jù)SAS得△ABC≌DEF,即可得BC=EF,且BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論