2025屆湖北省武漢市江岸區(qū)武漢市二中學廣雅中學數(shù)學九上期末質(zhì)量檢測試題含解析_第1頁
2025屆湖北省武漢市江岸區(qū)武漢市二中學廣雅中學數(shù)學九上期末質(zhì)量檢測試題含解析_第2頁
2025屆湖北省武漢市江岸區(qū)武漢市二中學廣雅中學數(shù)學九上期末質(zhì)量檢測試題含解析_第3頁
2025屆湖北省武漢市江岸區(qū)武漢市二中學廣雅中學數(shù)學九上期末質(zhì)量檢測試題含解析_第4頁
2025屆湖北省武漢市江岸區(qū)武漢市二中學廣雅中學數(shù)學九上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省武漢市江岸區(qū)武漢市二中學廣雅中學數(shù)學九上期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如果小強將飛鏢隨意投中如圖所示的正方形木板,那么P(飛鏢落在陰影部分的概率)為()A. B. C. D.2.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確的個數(shù)是()A.1 B.2 C.3 D.43.如圖,點A、點B是函數(shù)y=的圖象上關于坐標原點對稱的任意兩點,BC∥x軸,AC∥y軸,△ABC的面積是4,則k的值是()A.-2 B.±4 C.2 D.±24.在△ABC中,∠C=90°.若AB=3,BC=1,則cosB的值為()A. B. C. D.35.在同一時刻,身高1.5米的小紅在陽光下的影長2米,則影長為6米的大樹的高是()A.4.5米 B.8米 C.5米 D.5.5米6.如圖,?ABCD的對角線相交于點O,且,過點O作交BC于點E,若的周長為10,則?ABCD的周長為A.14 B.16 C.20 D.187.下列式子中表示是的反比例函數(shù)的是()A. B. C. D.8.如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點按逆時針方向旋轉(zhuǎn)角(0°<<90°)得到△DEC,設CD交AB于點F,連接AD,當旋轉(zhuǎn)角度數(shù)為________,△ADF是等腰三角形.A.20° B.40° C.10° D.20°或40°9.若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(﹣4,),則下列點在該圖象上的是()A.(﹣5,2) B.(3,﹣6) C.(2,9) D.(9,2)10.已知三地順次在同-直線上,甲、乙兩人均騎車從地出發(fā),向地勻速行駛.甲比乙早出發(fā)分鐘;甲到達地并休息了分鐘后,乙追上了甲.甲、乙同時從地以各自原速繼續(xù)向地行駛.當乙到達地后,乙立即掉頭并提速為原速的倍按原路返回地,而甲也立即提速為原速的二倍繼續(xù)向地行駛,到達地就停止.若甲、乙間的距離(米)與甲出發(fā)的時間(分)之間的函數(shù)關系如圖所示,則下列說法錯誤的是()A.甲、乙提速前的速度分別為米/分、米/分.B.兩地相距米C.甲從地到地共用時分鐘D.當甲到達地時,乙距地米11.已知如圖,中,,,,邊的垂直平分線交于點,交于點,則的長是().A. B. C.4 D.612.如圖,用一個半徑為5cm的定滑輪帶動重物上升,滑輪上一點P旋轉(zhuǎn)了108°,假設繩索(粗細不計)與滑輪之間沒有滑動,則重物上升了()A.πcm B.2πcm C.3πcm D.5πcm二、填空題(每題4分,共24分)13.圓內(nèi)接正六邊形一邊所對的圓周角的度數(shù)是__________.14.如圖,直線,等腰直角三角形的三個頂點分別在,,上,90°,交于點,已知與的距離為2,與的距離為3,則的長為________.15.如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中的長是_____cm(計算結果保留π).16.如圖,在半徑為的中,的長為,若隨意向圓內(nèi)投擲一個小球,小球落在陰影部分的概率為______________.17.將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線,若直線y=x+b與這兩條拋物線共有3個公共點,則b的取值范圍為_____.18.如圖,以矩形ABCD的頂點A為圓心,線段AD長為半徑畫弧,交AB邊于F點;再以頂點C為圓心,線段CD長為半徑畫弧,交AB邊于點E,若AD=,CD=2,則DE、DF和EF圍成的陰影部分面積是_____.三、解答題(共78分)19.(8分)解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+620.(8分)如圖,甲、乙兩人在玩轉(zhuǎn)盤游戲時,準備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A、B,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每一個扇形內(nèi)標上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針所指區(qū)域的數(shù)字之和為0時,甲獲勝;數(shù)字之和為1時,乙獲勝.如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止.(1)用畫樹狀圖或列表法求乙獲勝的概率;(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由.21.(8分)如圖,兩個班的學生分別在C、D兩處參加植樹勞動,現(xiàn)要在道路AO、OB的交叉區(qū)域內(nèi)(∠AOB的內(nèi)部)設一個茶水供應點M,M到兩條道路的距離相等,且MC=MD,這個茶水供應點的位置應建在何處?請說明理由.(保留作圖痕跡,不寫作法)22.(10分)如圖,在?ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.(1)求EG:BG的值;(2)求證:AG=OG;(3)設AG=a,GH=b,HO=c,求a:b:c的值.23.(10分)已知:關于x的方程,根據(jù)下列條件求m的值.(1)方程有一個根為1;(2)方程兩個實數(shù)根的和與積相等.24.(10分)某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用長的籬笆圍成一個矩形花園(籬笆只圍、兩邊).(1)若圍成的花園面積為,求花園的邊長;(2)在點處有一顆樹與墻,的距離分別為和,要能將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),又使得花園面積有最大值,求此時花園的邊長.25.(12分)如圖,CD為⊙O的直徑,弦AB交CD于點E,連接BD、OB.(1)求證:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半徑長.26.(1)計算:.(2)用適當方法解方程:(3)用配方法解方程:

參考答案一、選擇題(每題4分,共48分)1、C【解析】先求大正方形和陰影部分的面積分別為36和4,再用面積比求概率.【詳解】設小正方形的邊長為1,則正方形的面積為6×6=36,陰影部分面積為,所以,P落在三角形內(nèi)的概率是.故選C.【點睛】本題考核知識點:幾何概率.解答本題的關鍵是理解幾何概率的概念,即:概率=相應的面積與總面積之比.分別求出相關圖形面積,再求比.2、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數(shù)的性質(zhì)以及二次函數(shù)最值等知識,正確得出A點坐標是解題關鍵.3、C【詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴k>0,∵BC∥x軸,AC∥y軸,∴S△AOD=S△BOE=k,∵反比例函數(shù)及正比例函數(shù)的圖象關于原點對稱,∴A、B兩點關于原點對稱,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故選C.【點睛】本題考查反比例函數(shù)的性質(zhì).4、A【分析】直接利用銳角三角函數(shù)關系的答案.【詳解】如圖所示:∵AB=3,BC=1,∴cosB==.故選:A.【點睛】考核知識點:余弦.熟記余弦定義是關鍵.5、A【解析】根據(jù)同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構成的兩個直角三角形相似即可得.【詳解】如圖,由題意可得:由相似三角形的性質(zhì)得:,即解得:(米)故選:A.【點睛】本題考查了相似三角形的性質(zhì),理解題意,將問題轉(zhuǎn)化為利用相似三角形的性質(zhì)求解是解題關鍵.6、C【解析】由平行四邊形的性質(zhì)得出,,,再根據(jù)線段垂直平分線的性質(zhì)得出,由的周長得出,即可求出平行四邊形ABCD的周長.【詳解】解:四邊形ABCD是平行四邊形,,,,,,的周長為10,,平行四邊形ABCD的周長;故選:C.【點睛】本題考查了平行四邊形的性質(zhì)、線段垂直平分線的性質(zhì)以及三角形、平行四邊形周長的計算;熟練掌握平行四邊形的性質(zhì),并能進行推理計算是解決問題的關鍵.7、D【解析】根據(jù)反比例函數(shù)的定義逐項分析即可.【詳解】A.是一次函數(shù),故不符合題意;B.二次函數(shù),故不符合題意;C.不是反比例函數(shù),故不符合題意;D.是反比例函數(shù),符合題意;故選D.【點睛】本題考查了反比例函數(shù)的定義,一般地,形如(k為常數(shù),k≠0)的函數(shù)叫做反比例函數(shù).8、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,根據(jù)等腰三角形的兩底角相等求出∠ADF=∠DAC,再表示出∠DAF,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三種情況討論求解.【詳解】∵△ABC繞C點逆時針方向旋轉(zhuǎn)得到△DEC,∴AC=CD,∴∠ADF=∠DAC=(180°-α),∴∠DAF=∠DAC-∠BAC=(180°-α)-30°,根據(jù)三角形的外角性質(zhì),∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三種情況討論,①∠ADF=∠DAF時,(180°-α)=(180°-α)-30°,無解,②∠ADF=∠AFD時,(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD時,(180°-α)-30°=30°+α,解得α=20°,綜上所述,旋轉(zhuǎn)角α度數(shù)為20°或40°.故選:D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊對等角的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),難點在于要分情況討論.9、B【分析】根據(jù)反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(﹣4,)求出k的值,進而根據(jù)在反比例函數(shù)圖像上的點的橫縱坐標的積應該等于其比例系數(shù)對各選項進行代入判斷即可.【詳解】∵若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(﹣4,),∴k=﹣4×=﹣18,A:,故不在函數(shù)圖像上;B:,故在函數(shù)圖像上;C:,故不在函數(shù)圖像上;D:,故不在函數(shù)圖像上.故選:B.【點睛】本題主要考查了反比例函數(shù)圖像上點的坐標特征,求出k的值是解題關鍵.10、C【分析】設出甲、乙提速前的速度,根據(jù)“乙到達B地追上甲”和“甲、乙同時從B出發(fā),到相距900米”建立二元一次方程組求出速度即可判斷A,然后根據(jù)乙到達C的時間求A、C之間的距離可判斷B,根據(jù)乙到達C時甲距C的距離及此時速度可計算時間判斷C,根據(jù)乙從C返回A時的速度和甲到達C時乙從C出發(fā)的時間即可計算路程判斷出D.【詳解】A.設甲提速前的速度為米/分,乙提速前的速度為米/分,由圖象知,當乙到達B地追上甲時,有:,化簡得:,當甲、乙同時從B地出發(fā),甲、乙間的距離為900米時,有:,化簡得:,解方程組:,得:,故甲提速前的速度為300米/分,乙提速前的速度為400米/分,故選項A正確;B.由圖象知,甲出發(fā)23分鐘后,乙到達C地,則A、C兩地相距為:(米),故選項B正確;C.由圖象知,乙到達C地時,甲距C地900米,這時,甲提速為(米/分),則甲到達C地還需要時間為:(分鐘),所以,甲從A地到C地共用時為:(分鐘),故選項C錯誤;D.由題意知,乙從C返回A時,速度為:(米/分鐘),當甲到達C地時,乙從C出發(fā)了2.25分鐘,此時,乙距A地距離為:(米),故選項D正確.故選:C.【點睛】本題為方程與函數(shù)圖象的綜合應用,正確分析函數(shù)圖象,明確特殊點的意義是解題的關鍵.11、B【分析】根據(jù)勾股定理求出BC,根據(jù)線段垂直平分線性質(zhì)和勾股定理可求AE.【詳解】因為中,,,,所以BC=因為的垂直平分線交于點,所以AE=EC設AE=x,則BE=8-x,EC=x在Rt△BCE中,由BE2+BC2=EC2可得x2+(8-x)2=62解得x=.即AE=故選:B【點睛】考核知識點:勾股定理,線段垂直平分線.根據(jù)勾股定理求出相應線段是關鍵.12、C【解析】試題分析:根據(jù)定滑輪的性質(zhì)得到重物上升的即為轉(zhuǎn)過的弧長,利用弧長公式得:l==3πcm,則重物上升了3πcm,故選C.考點:旋轉(zhuǎn)的性質(zhì).二、填空題(每題4分,共24分)13、30°或150°【分析】求出一條邊所對的圓心角的度數(shù),再根據(jù)圓周角和圓心角的關系解答.【詳解】解:圓內(nèi)接正六邊形的邊所對的圓心角360°÷6=60°,圓內(nèi)接正六邊形的一條邊所對的弧可能是劣弧,也可能是優(yōu)弧,

根據(jù)一條弧所對的圓周角等于它所對圓心角的一半,

所以圓內(nèi)接正六邊形的一條邊所對的圓周角的度數(shù)是30°或150°,故答案為30°或150°.【點睛】本題考查學生對正多邊形的概念掌握和計算的能力,涉及的知識點有正多邊形的中心角、圓周角與圓心角的關系,屬于基礎題,要注意分兩種情況討論.14、【分析】作AF⊥,BE⊥,證明△ACF≌△CBE,求出CE,根據(jù)勾股定理求出BC、AC,作DH⊥,根據(jù)DH∥AF證明△CDH∽△CAF,求出CD,再根據(jù)勾股定理求出BD.【詳解】如圖,作AF⊥,BE⊥,則∠AFC=BEC=90°,由題意得BE=3,AF=2+3=5,∵△是等腰直角三角形,90°,∴AC=BC,∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∴△ACF≌△CBE,∴CE=AF=5,CF=BE=3,∴,作DH⊥,∴DH∥AF∴△CDH∽△CAF,∴,∴,∴CD=,∴BD=,故答案為:.【點睛】此題考查等腰直角三角形的性質(zhì),全等三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),平行線間的距離處處相等的性質(zhì),正確引出輔助線解決問題是解題的關鍵.15、10π【分析】根據(jù)的長就是圓錐的底面周長即可求解.【詳解】解:∵圓錐的高h為12cm,OA=13cm,∴圓錐的底面半徑為=5cm,∴圓錐的底面周長為10πcm,∴扇形AOC中的長是10πcm,故答案為10π.【點睛】本題考查了圓錐的計算,解題的關鍵是了解圓錐的底面周長等于展開扇形的弧長.16、【分析】根據(jù)圓的面積公式和扇形的面積公式分別求得各自的面積,再根據(jù)概率公式即可得出答案.【詳解】∵圓的面積是:,扇形的面積是:,∴小球落在陰影部分的概率為:.故答案為:.【點睛】本題主要考查了幾何概率問題,用到的知識點為:概率=相應面積與總面積之比.17、0<b<【分析】畫出圖象,利用圖象法解決即可.【詳解】解:將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線為y=﹣x2+4x(0≤x≤4)畫出函數(shù)如圖,由圖象可知,當直線y=x+b經(jīng)過原點時有兩個公共點,此時b=0,解,整理得x2﹣3x+b=0,若直線y=x+b與這兩條拋物線共有3個公共點,則△=9﹣4b>0,解得所以,當0<b<時,直線y=x+b與這兩條拋物線共有3個公共點,故答案為.【點睛】本題考查了二次函數(shù)圖像的折疊問題,解決本題的關鍵是能夠根據(jù)題意畫出二次函數(shù)折疊后的圖像,掌握二次函數(shù)與一元二次方程的關系.18、2π+2﹣4【分析】如圖,連接EC.首先證明△BEC是等腰直角三角形,根據(jù)S陰=S矩形ABCD-(S矩形ABCD-S扇形ADF)-(S矩形ABCD-S扇形CDE-S△EBC)=S扇形ADF+S扇形CDE+S△EBC-S矩形ABCD計算即可.【詳解】如圖,連接EC.∵四邊形ABCD是矩形,∴AD=BC=2,CD=AB=EC=2,∠B=∠A=∠DCB=90°,∴BE===2,∴BC=BE=2,∴∠BEC=∠BCE=45°,∴∠ECD=45°,∴S陰=S矩形ABCD﹣(S矩形ABCD﹣S扇形ADF)﹣(S矩形ABCD﹣S扇形CDE﹣S△EBC)=S扇形ADF+S扇形CDE+S△EBC﹣S矩形ABCD=+×2×2﹣2×2,=2π+2﹣4.故答案為:2π+2﹣4.【點睛】本題考查扇形的面積公式,矩形的性質(zhì)等知識,解題的關鍵是熟練掌握基本知識,學會用分割法求陰影部分面積.三、解答題(共78分)19、(1)x1=-5,x2=1;(2)x1=-1.5,x2=2【分析】(1)根據(jù)因式分解法即可求解;(2)根據(jù)因式分解法即可求解.【詳解】解:(1)x2+4x-5=0因式分解得,(x+5)(x-1)=0則,x+5=0或者x-1=0∴x1=-5,x2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移項得,x(2x+3)-2(2x+3)=0則,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x1=-1.5,x2=2.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知因式分解法解方程.20、(1);(2)公平.理由見解析.【解析】試題分析:依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結果,然后根據(jù)概率公式求出甲乙獲勝的概率,比較即可.試題解析:(1)列表得:由列表法可知:會產(chǎn)生12種結果,它們出現(xiàn)的機會相等,其中和為1的有3種結果.∴P(乙獲勝)=;(2)公平.∵P(乙獲勝)=,P(甲獲勝)=.∴P(乙獲勝)=P(甲獲勝),∴游戲公平.考點:1.游戲公平性;2.列表法與樹狀圖法.21、作圖見解析,理由見解析.【分析】因為M到兩條道路的距離相等,且使MC=MD,所以M應是∠O的平分線和CD的垂直平分線的交點.【詳解】如圖,∠O的平分線和CD的垂直平分線的交點即為茶水供應點的位置.理由是:因為M是∠O的平分線和CD的垂直平分線的交點,所以M到∠O的兩邊OA和OB的距離相等,M到C、D的距離相等,所以M就是所求.【點睛】此題考查了基本作圖以及線段垂直平分線的性質(zhì)和角平分線的性質(zhì),需仔細分析題意,結合圖形,利用線段的垂直平分線和角的平分線的性質(zhì)是解答此題的關鍵.22、(1)1:3;(1)見解析;(3)5:3:1.【分析】(1)根據(jù)平行四邊形的性質(zhì)可得AO=AC,AD=BC,AD∥BC,從而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根據(jù)相似三角形的性質(zhì),即可求出EG:BG的值;(1)根據(jù)相似三角形的性質(zhì)可得GC=3AG,則有AC=4AG,從而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根據(jù)相似三角形的性質(zhì)可得AG=AC,AH=AC,結合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已證),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.23、(1);(2)【分析】(1)將1代入原方程,可得關于m的方程,解此方程即可求得答案;(2)利用根與系數(shù)的關系列出方程即可求得答案.【詳解】(1)方程的根1代入方程得:=0,整理得:=0,∵∴故答案為:(2)方程兩個實數(shù)根的和為方程兩個實數(shù)根的積為,依題意得:,即:,分解因式得:解得:或2,當時,原方程為:,方程有實數(shù)根;當時,原方程為:,,方程沒有實數(shù)根,∴不符合題意,舍去;m的值為:【點睛】本題考查了根與系數(shù)的關系及求解一元二次方程,熟練掌握一元二次方程根與系數(shù)的關系是解題的關鍵.24、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論