廣東省汕頭市濠江區(qū)2025屆九上數(shù)學期末經(jīng)典模擬試題含解析_第1頁
廣東省汕頭市濠江區(qū)2025屆九上數(shù)學期末經(jīng)典模擬試題含解析_第2頁
廣東省汕頭市濠江區(qū)2025屆九上數(shù)學期末經(jīng)典模擬試題含解析_第3頁
廣東省汕頭市濠江區(qū)2025屆九上數(shù)學期末經(jīng)典模擬試題含解析_第4頁
廣東省汕頭市濠江區(qū)2025屆九上數(shù)學期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省汕頭市濠江區(qū)2025屆九上數(shù)學期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.若關(guān)于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠02.為了解某地區(qū)九年級男生的身高情況,隨取了該區(qū)100名九年級男生,他們的身高x(cm)統(tǒng)計如根據(jù)以上結(jié)果,抽查該地區(qū)一名九年級男生,估計他的身高不高于180cm的概率是()組別(cm)x≤160160<x≤170170<x≤180x>180人數(shù)1542385A.0.05 B.0.38 C.0.57 D.0.953.由若干個相同的小正方體搭成的一個幾何體的俯視圖和左視圖如圖所示,則搭成這個幾何體的小正方體的個數(shù)最多有()A.5個 B.6個 C.7個 D.8個4.已知關(guān)于的一元二次方程有兩個相等的實數(shù)根,則()A.4 B.2 C.1 D.﹣45.如圖,二次函數(shù)y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,1)與(0,3)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc<0;②9a+3b+c>0;③若點M(,y1),點N(,y1)是函數(shù)圖象上的兩點,則y1<y1;④﹣<a<﹣;⑤c-3a>0其中正確結(jié)論有()A.1個 B.3個 C.4個 D.5個6.若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點為(﹣1,0),(3,0)C.當x=1時,y有最大值為0D.拋物線的對稱軸是直線x=7.如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點的坐標是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)8.下列說法不正確的是()A.所有矩形都是相似的B.若線段a=5cm,b=2cm,則a:b=5:2C.若線段AB=cm,C是線段AB的黃金分割點,且AC>BC,則AC=cmD.四條長度依次為lcm,2cm,2cm,4cm的線段是成比例線段9.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.10.如圖,將Rt△ABC平移到△A′B′C′的位置,其中∠C=90°,使得點C′與△ABC的內(nèi)心重合,已知AC=4,BC=3,則陰影部分的周長為()A.5 B.6 C.7 D.8二、填空題(每小題3分,共24分)11.如圖,,,是上的三個點,四邊形是平行四邊形,連接,,若,則_____.12.已知二次函數(shù)是常數(shù)),當時,函數(shù)有最大值,則的值為_____.13.已知函數(shù)是反比例函數(shù),則的值為__________.14.分解因式:.15.如圖,將一張正方形紙片,依次沿著折痕,(其中)向上翻折兩次,形成“小船”的圖樣.若,四邊形與的周長差為,則正方形的周長為______.16.如圖,正方形ABCD繞點B逆時針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為,則AK=.17.若關(guān)于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根,則m的值為______.18.在一個暗箱里放有m個除顏色外其他完全相同的小球,這m個小球中紅球只有4個,每次將球攪勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算m大約是_____.三、解答題(共66分)19.(10分)如圖,在□ABCD中,AB=5,BC=8.(1)作∠ABC的角平分線交線段AD于點E(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法):(2)在(1)的條件下,求ED的長.20.(6分)某中學開展“唱紅歌”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.(1)根據(jù)圖示填寫下表:班級中位數(shù)(分)眾數(shù)(分)九(1)85九(2)100(2)通過計算得知九(2)班的平均成績?yōu)?5分,請計算九(1)班的平均成績.(3)結(jié)合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好.(4)已知九(1)班復賽成績的方差是70,請計算九(2)班的復賽成績的方差,并說明哪個班的成績比較穩(wěn)定?21.(6分)我區(qū)某校組織了一次“詩詞大會”,張老師為了選拔本班學生參加,對本班全體學生詩詞的掌握情況進行了調(diào)查,并將調(diào)查結(jié)果分為了三類:A:好,B:中,C:差.請根據(jù)圖中信息,解答下列問題:(1)全班學生共有人;(2)扇形統(tǒng)計圖中,B類占的百分比為%,C類占的百分比為%;(3)將上面的條形統(tǒng)計圖補充完整;(4)小明被選中參加了比賽.比賽中有一道必答題是:從下表所示的九宮格中選取七個字組成一句詩,其答案為“便引詩情到碧霄”.小明回答該問題時,對第四個字是選“情”還是選“青”,第七個字是選“霄”還是選“宵”,都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小明回答正確的概率.情到碧霄詩青引宵便22.(8分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C(1)求證:AE與⊙O相切于點A;(2)若AE∥BC,BC=2,AC=2,求AD的長.23.(8分)在平面直角坐標系中,拋物線與軸交于點A,將點A向右平移2個單位長度,得到點B,點B在拋物線上.(1)①直接寫出拋物線的對稱軸是________;②用含a的代數(shù)式表示b;(2)橫、縱坐標都是整數(shù)的點叫整點.點A恰好為整點,若拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(不含邊界)恰有1個整點,結(jié)合函數(shù)的圖象,直接寫出a的取值范圍.24.(8分)如圖,一位籃球運動員在離籃圈水平距離4處跳起投籃,球運行的高度()與運行的水平距離()滿足解析式,當球運行的水平距離為1.5時,球離地面高度為2.2,球在空中達到最大高度后,準確落入籃圈內(nèi).已知籃圈中心離地面距離為2.35.(1)當球運行的水平距離為多少時,達到最大高度?最大高度為多少?(2)若該運動員身高1.8,這次跳投時,球在他頭頂上方3.25處出手,問球出手時,他跳離地面多高?25.(10分)如圖,在Rt△ABC中,∠ACB=90°,點D是斜邊AB的中點,過點B、點C分別作BE∥CD,CE∥BD.(1)求證:四邊形BECD是菱形;(2)若∠A=60°,AC=,求菱形BECD的面積.26.(10分)在一個不透明的布袋中,有三個除顏色外其它均相同的小球,其中兩個黑色,一個紅色.(1)請用表格或樹狀圖求出:一次隨機取出2個小球,顏色不同的概率.(2)如果老師在布袋中加入若干個紅色小球.然后小明通過做實驗的方式猜測加入的小球數(shù),小明每次換出一個小球記錄下慎色并放回,實驗數(shù)據(jù)如下表:實驗次數(shù)1002003004005001000摸出紅球78147228304373752請你幫小明算出老師放入了多少個紅色小球.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.【詳解】∵關(guān)于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數(shù)根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故選D.【點睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2﹣4ac:當△>1,方程有兩個不相等的實數(shù)根;當△=1,方程有兩個相等的實數(shù)根;當△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.2、D【分析】先計算出樣本中身高不高于180cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不高于180cm的頻率==0.1,所以估計他的身高不高于180cm的概率是0.1.故選:D.【點睛】本題考查了概率,靈活的利用頻率估計概率是解題的關(guān)鍵.3、D【分析】根據(jù)所給出的圖形可知這個幾何體共有3層,3列,先看第一層正方體可能的最多個數(shù),再看第二、三層正方體的可能的最多個數(shù),相加即可.【詳解】根據(jù)主視圖和左視圖可得:這個幾何體有3層,3列,最底層最多有2×2=4個正方體,第二層有2個正方體,第三層有2個正方體則搭成這個幾何體的小正方體的個數(shù)最多是4+2+2=8個;故選:D.【點睛】此題考查了有三視圖判斷幾何體,關(guān)鍵是根據(jù)主視圖和左視圖確定組合幾何體的層數(shù)及列數(shù).4、A【分析】根據(jù)方程有兩個相等的實數(shù)根結(jié)合根的判別式即可得出關(guān)于的一元一次方程,解方程即可得出結(jié)論.【詳解】解:∵方程有兩個相等的實數(shù)根,∴,解得:.故選A.【點睛】本題考查了根的判別式以及解一元一次方程,由方程有兩個相等的實數(shù)根結(jié)合根的判別式得出關(guān)于的一元一次方程是解題的關(guān)鍵.5、D【分析】根據(jù)二次函數(shù)的圖項與系數(shù)的關(guān)系即可求出答案.【詳解】①∵圖像開口向下,,∵與y軸的交點B在(0,1)與(0,3)之間,,∵對稱軸為x=1,,∴b=-4a,∴b>0,∴abc<0,故①正確;②∵圖象與x軸交于點A(-1,0),對稱軸為直線x=1,∴圖像與x軸的另一個交點為(5,0),∴根據(jù)圖像可以看出,當x=3時,函數(shù)值y=9a+3b+c>0,故②正確;③∵點,∴點M到對稱軸的距離為,點N到對稱軸的距離為,∴點M到對稱軸的距離大于點N到對稱軸的距離,∴,故③正確;④根據(jù)圖像與x軸的交點坐標可以設(shè)函數(shù)的關(guān)系式為:y=a(x-5)(x+1),把x=0代入得y=-5a,∵圖像與y軸的交點B在(0,1)與(0,3)之間,,解不等式組得,故④正確;⑤∵對稱軸為x=1,∴b=-4a,當x=1時,y=a+b+c=a-4a+c=c-3a>0,故⑤正確;綜上分析可知,正確的結(jié)論有5個,故D選項正確.故選D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax1+bx+c(a≠0)的圖象,當a>0,開口向上,函數(shù)有最小值,a<0,開口向下,函數(shù)有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側(cè),a與b異號,對稱軸在y軸的右側(cè);當c>0,拋物線與y軸的交點在x軸的上方.6、D【解析】A、由a=1>0,可得出拋物線開口向上,A選項錯誤;B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、由拋物線開口向上,可得出y無最大值,C選項錯誤;D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對稱軸為直線x=-,D選項正確.綜上即可得出結(jié)論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項錯誤;B、∵拋物線y=x1-3x+c與y軸的交點為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、∵拋物線開口向上,∴y無最大值,C選項錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的性質(zhì)、二次函數(shù)的最值以及二次函數(shù)圖象上點的坐標特征,利用二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點的坐標特征逐一分析四個選項的正誤是解題的關(guān)鍵.7、C【分析】分順時針旋轉(zhuǎn)和逆時針旋轉(zhuǎn)兩種情況討論解答即可.【詳解】解:∵點D(5,3)在邊AB上,∴BC=5,BD=5﹣3=2,①若順時針旋轉(zhuǎn),則點在x軸上,O=2,所以,(﹣2,0),②若逆時針旋轉(zhuǎn),則點到x軸的距離為10,到y(tǒng)軸的距離為2,所以,(2,10),綜上所述,點的坐標為(2,10)或(﹣2,0).故選:C.【點睛】本題考查了坐標與圖形變化﹣旋轉(zhuǎn),正方形的性質(zhì),難點在于分情況討論.8、A【解析】根據(jù)相似多邊形的性質(zhì),矩形的性質(zhì),成比例線段,黃金分割判斷即可.【詳解】解:A.所有矩形對應(yīng)邊的比不一定相等,所以不一定都是相似的,A不正確,符合題意;B.若線段a=5cm,b=2cm,則a:b=5:2,B正確,不符合題意;C.若線段AB=cm,C是線段AB的黃金分割點,且AC>BC,則AC=cm,C正確,不符合題意;D.∵1:2=2:4,∴四條長度依次為lcm,2cm,2cm,4cm的線段是成比例線段,D正確,不符合題意;故選:A.【點睛】本題考查的是相似多邊形的性質(zhì),矩形的性質(zhì),成比例線段,黃金分割,掌握它們的概念和性質(zhì)是解題的關(guān)鍵.9、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A、不是中心對稱圖形,故本選項不合題意;

B、是中心對稱圖形,故本選項符合題意;

C、不中心對稱圖形,故本選項不合題意;

D、不中心對稱圖形,故本選項不合題意.

故選:B.【點睛】本題主要考查了中心對稱圖形的概念:關(guān)鍵是找到相關(guān)圖形的對稱中心,旋轉(zhuǎn)180度后與原圖重合.10、A【分析】由三角形面積公式可求C'E的長,由相似三角形的性質(zhì)可求解.【詳解】解:如圖,過點C'作C'E⊥AB,C'G⊥AC,C'H⊥BC,并延長C'E交A'B'于點F,連接AC',BC',CC',∵點C'與△ABC的內(nèi)心重合,C'E⊥AB,C'G⊥AC,C'H⊥BC,

∴C'E=C'G=C'H,

∵S△ABC=S△AC'C+S△AC'B+S△BC'C,∴AC×BC=AC×CC'+BA×C'E+BC×C'H∴C'E=1,

∵將Rt△ABC平移到△A'B'C'的位置,

∴AB∥A'B',AB=A'B',A'C'=AC=4,B'C'=BC=3

∴C'F⊥A'B',A'B'=5,∴A'C'×B'C'=A'B'×C'F,∴C'F=,∵AB∥A'B'

∴△C'MN∽△C'A'B',∴C陰影部分=C△C'A'B'×=(5+3+4)×=5.故選A.【點睛】本題考查了三角形的內(nèi)切圓和內(nèi)心,相似三角形的判定和性質(zhì),熟練運用相似三角形的性質(zhì)是本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、64【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【點睛】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關(guān)鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.12、或【分析】由題意,二次函數(shù)的對稱軸為,且開口向下,則可分為三種情況進行分析,分別求出m的值,即可得到答案.【詳解】解:∵,∴對稱軸為,且開口向下,∵當時,函數(shù)有最大值,①當時,拋物線在處取到最大值,∴,解得:或(舍去);②當時,函數(shù)有最大值為1;不符合題意;③當時,拋物線在處取到最大值,∴,解得:或(舍去);∴m的值為:或;故答案為:或.【點睛】本題考查了二次函數(shù)的性質(zhì),以及二次函數(shù)的最值,解題的關(guān)鍵是掌握二次函數(shù)的性質(zhì),確定對稱軸的位置,進行分類討論.13、1【分析】根據(jù)反比例函數(shù)的定義列出方程,然后解一元二次方程即可.【詳解】解:根據(jù)題意得,n2﹣2=﹣1且n+1≠0,整理得,n2=1且n+1≠0,解得n=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的定義,反比例函數(shù)解析式的一般形式(k≠0),也可轉(zhuǎn)化為y=kx﹣1(k≠0)的形式,特別注意不要忽略k≠0這個條件.14、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.考點:提公因式法和應(yīng)用公式法因式分解.15、1【分析】由正方形的性質(zhì)得出△ABD是等腰直角三角形,由EF∥BD,得出△AEF是等腰直角三角形,由折疊的性質(zhì)得△AHG是等腰直角三角形,△BEH與△DFG是全等的等腰直角三角形,則GF=DF=BE=EH=1,設(shè)AB=x,則BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),由四邊形BEFD與△AHG的周長差為5-2列出方程解得x=4,即可得出結(jié)果.【詳解】∵四邊形ABCD是正方形,∴△ABD是等腰直角三角形,∵EF∥BD,∴△AEF是等腰直角三角形,由折疊的性質(zhì)得:△AHG是等腰直角三角形,△BEH與△DFG是全等的等腰直角三角形,∴GF=DF=BE=EH=1,設(shè)AB=x,則BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),∵四邊形BEFD與△AHG的周長差為5-2,∴x+(x-1)+2-[2(x-2)+(x-2)]=5-2,解得:x=4,∴正方形ABCD的周長為:4×4=1,故答案為:1.【點睛】本題考查了折疊的性質(zhì)、正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識,熟練掌握折疊與正方形的性質(zhì)以及等腰直角三角形的性質(zhì)是解題的關(guān)鍵.16、.【詳解】連接BH,如圖所示:∵四邊形ABCD和四邊形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋轉(zhuǎn)的性質(zhì)得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB?tan∠ABH==1,∴EH=1,∴FH=,在Rt△FKH中,∠FKH=30°,∴KH=2FH=,∴AK=KH﹣AH==;故答案為.考點:旋轉(zhuǎn)的性質(zhì).17、-1【分析】根據(jù)關(guān)于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根可知△=0,求出m的取值即可.【詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當△>0時,方程有兩個不相等的兩個實數(shù)根;②當△=0時,方程有兩個相等的兩個實數(shù)根;③當△<0時,方程無實數(shù)根.18、1【分析】由于摸到紅球的頻率穩(wěn)定在25%,由此可以確定摸到紅球的概率為25%,而m個小球中紅球只有4個,由此即可求出m.【詳解】∵摸到紅球的頻率穩(wěn)定在25%,∴摸到紅球的概率為25%,而m個小球中紅球只有4個,∴推算m大約是4÷25%=1.故答案為:1.【點睛】本題考查了利用頻率估計概率,其中解題時首先通過實驗得到事件的頻率,然后利用頻率估計概率即可解決問題.三、解答題(共66分)19、(1)作圖見解析;(2)3.【分析】(1)以點B為圓心,任意長為半徑畫弧,交AB,BC于兩點,分別以這兩點為圓心,大于這兩點距離的一半為半徑畫弧,在□ABCD內(nèi)交于一點,過點B以及這個交點作射線,交AD于點E即可;(2)利用角平分線的性質(zhì)以及平行線的性質(zhì)求出∠ABE=∠AEB,從而得AE=AB,再根據(jù)AB、BC的長即可得出答案.【詳解】解:(1)如圖所示,BE為所求;(2)∵四邊形ABCD是平行四邊形,∴AB//CD,AD=BC=8,∴∠AED=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AE=AB=5,∴DE=AD-AE=3.【點睛】本題考查了角平分線的畫法以及角平分線的性質(zhì)以及平行線的性質(zhì)等知識,得出AE=AB是解題關(guān)鍵.20、(1)見解析;(2)85分;(3)九(1)班成績好;(4)九(1)班成績穩(wěn)定.【解析】(1)觀察圖分別寫出九(1)班和九(2)班5名選手的復賽成績,然后根據(jù)中位數(shù)的定義和平均數(shù)的求法以及眾數(shù)的定義求解即可;

(2)根據(jù)平均數(shù)計算即可;

(3)在平均數(shù)相同的情況下,中位數(shù)高的成績較好;

(4)先根據(jù)方差公式分別計算兩個班復賽成績的方差,再根據(jù)方差的意義判斷即可.【詳解】解:(1)填表:班級中位數(shù)(分)眾數(shù)(分)九(1)8585九(2)80100(2)=85答:九(1)班的平均成績?yōu)?5分(3)九(1)班成績好些因為兩個班級的平均數(shù)都相同,九(1)班的中位數(shù)高,所以在平均數(shù)相同的情況下中位數(shù)高的九(1)班成績好.(4)S21班=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,S22班=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,因為160>70所以九(1)班成績穩(wěn)定.【點睛】考查了平均數(shù)、中位數(shù)、眾數(shù)和方差的意義即運用.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.21、(1)40;(2)60,15;(3)補全條形統(tǒng)計圖見解析;(4)小明回答正確的概率是.【分析】(1)根據(jù)統(tǒng)計圖可知,10人占全班人數(shù)的,據(jù)此求解;(2)根據(jù)(1)中所求,容易得C類占的百分比,用1減去兩類的百分比即可求得類百分比;(3)根據(jù)題意,畫出樹狀圖,根據(jù)概率公式即可求得.【詳解】(1)全班學生總?cè)藬?shù)為10÷25%=40(人);故答案為:40;(2)B類占的百分比為:×100%=60%;C類占的百分比為1﹣25%﹣60%=15%;故答案為:60,15;(3)C類的人數(shù)40×15%=6(人),補全圖形如下:(4)根據(jù)題意畫圖如下:由樹狀圖可知共有4種可能結(jié)果,其中正確的有1種,所以小明回答正確的概率是.【點睛】本題考查統(tǒng)計圖表的中數(shù)據(jù)的計算,以及樹狀圖的繪制,涉及利用概率公式求隨機事件的概率,屬綜合基礎(chǔ)題.22、(1)證明見解析;(2)AD=2.【解析】(1)如圖,連接OA,根據(jù)同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結(jié)論;(2)先證明OA⊥BC,由垂徑定理得:,F(xiàn)B=BC,根據(jù)勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE與⊙O相切于點A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,F(xiàn)B=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【點睛】本題考查了圓的切線的判定、勾股定理及垂徑定理的應(yīng)用,屬于基礎(chǔ)題,熟練掌握切線的判定方法是關(guān)鍵:有切線時,常常“遇到切點連圓心得半徑,證垂直”.23、(1)①直線x=1;②b=-1a;(1)-1≤a<-1或1<a≤1.【分析】(1)①根據(jù)拋物線的對稱性可以直接得出其對稱軸;②利用對稱軸公式進一步求解即可;(1)分兩種情況:①,②,據(jù)此依次討論即可.【詳解】解:(1)①∵當x=0時,y=c,∴點A坐標為(0,c),∵點A向右平移1個單位長度,得到點B,∴點B(1,c),∵點B在拋物線上,∴拋物線的對稱軸是:直線x=1;故答案為:直線x=1;②∵拋物線的對稱軸是直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論