版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第6章一次函數(shù)6.6一次函數(shù)、一元一次方程和一元一次不等式一次函數(shù)與一元一次方程一次函數(shù)與一元一次不等式1.二元一次方程組與一次函數(shù)有何聯(lián)系
二元一次方程組的解是它們對應的兩個一次函數(shù)圖象的交點坐標;反之,兩個一次函數(shù)圖象的交點坐標也是它們所對應的二元一次方程組的解.2.二元一次方程組有哪些解法?消元法圖象法是一種代數(shù)方法1.已知一次函數(shù)的表達式,當其中一個變量的值確定時,可以由相應的一元一次方程確定另一個變量的值.知識點一次函數(shù)與一元一次方程12.一次函數(shù)y=kx+b(k、b為常數(shù),且k≠0)與一元一次方程kx+b=0(k、b為常數(shù),且k≠0)的關系:數(shù):函數(shù)y=kx+b中,函數(shù)值y=0時自變量x的值是方程kx+b=0的解.形:函數(shù)y=kx+b的圖像與x軸交點的橫坐標是方程kx+b=0的解.3.圖像解法解一元一次方程的步驟(1)轉化:將一元一次方程轉化為一次函數(shù);(2)畫圖像:畫出一次函數(shù)的圖像;(3)找交點:找出一次函數(shù)圖像與x軸的交點,交點的橫坐標即為一元一次方程的解.特別解讀對于一次函數(shù)y=kx+b(k、b為常數(shù),且k≠0),已知x的值求y的值,或已知y的值求x的值,就是把問題轉化為關于y或x的一元一次方程來求解.例1[期末·溫州]若一次函數(shù)y=kx+b(k≠0)的圖像經(jīng)過(4,0)和(3,2)兩點,則方程kx+b=4的解為(
)A.x=0
B.x=2
C.x=3
D.x=5解題秘方:先求出函數(shù)的表達式,再把y=4代入,轉化為解一元一次方程.答案:B
方法點撥關于x的方程kx+b=4的解,就是一次函數(shù)y=kx+b當y=4時對應的自變量的值.如圖6.6-1,一次函數(shù)y=ax+b和y=kx+c的圖像交于點P(2,4),則關于x的一元一次方程ax+b=kx+c的解是_________.例2x=2解題秘方:根據(jù)兩個一次函數(shù)圖像的交點的橫坐標即可得出方程的解.解:∵一次函數(shù)y=ax+b和y=kx+c的圖像交于點P(2,4),∴關于x的一元一次方程ax+b=kx+c的解為x=2.方法點撥利用一次函數(shù)解一元一次方程時,通常將解方程轉化為求兩個一次函數(shù)的函數(shù)值相等時自變量的取值問題,方程的解即為兩個一次函數(shù)圖像的交點的橫坐標.1.已知一次函數(shù)的表達式,當其中一個變量的取值范圍確定時,可以由相應的一元一次不等式確定另一個變量的取值范圍.知識點一次函數(shù)與一元一次不等式22.一次函數(shù)y=kx+b(k、b為常數(shù),且k≠0)與一元一次不等式kx+b>0(或kx+b<0)(k、b為常數(shù),且k≠0)的關系:數(shù):函數(shù)y=kx+b中,函數(shù)值y>0時自變量x的取值范圍是不等式kx+b>0的解集;函數(shù)值y<0時自變量x的取值范圍是不等式kx+b<0的解集.形:函數(shù)y=kx+b的圖像中,位于x軸上方的部分對應的自變量x的取值范圍是不等式kx+b>0的解集;位于x軸下方的部分對應的自變量x的取值范圍是不等式kx+b<0的解集.3.拓展直線y1=k1x+b1與直線y2=k2x+b2的交點的橫坐標即為方程k1x+b1=k2x+b2的解;不等式k1x+b1>k2x+b2(或k1x+b1<k2x+b2)的解集就是直線y1=k1x+b1在直線y2=k2x+b2上(或下)方部分對應的x的取值范圍.示例:如圖6.6-2所示,方程k1x+b1=k2x+b2的解為x=a;不等式k1x+b1>k2x+b2的解集為x>a;不等式k1x+b1<k2x+b2的解集為x<a.特別提醒利用圖像解法解一元一次不等式的一般步驟:1.將不等式轉化為kx+b>0或kx+b<0(k≠0)的形式;2.畫出函數(shù)圖像,并確定函數(shù)圖像與x
軸的交點坐標;3.根據(jù)函數(shù)圖像確定對應不等式的解集.[三?!ず贾輂如圖6.6-3,已知函數(shù)y1=3x+b和y2=ax-3的圖像交于點P(-2,-5),則根據(jù)圖像可得不等式3x+b>ax-3的解集是(
)A.x>-2
B.x<-2-2<x<0
D.x>0例3答案:A解題秘方:求不等式3x+b>ax-3的解集,就是看當x在什么范圍時,函數(shù)y1=3x+b的圖像在函數(shù)y2=ax-3的圖像上方.解:從圖像可知,當x>-2時,函數(shù)y1=3x+b的圖像在函數(shù)y2=ax-3的圖像上方,∴不等式3x+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電腦棋手》課件
- 《遠山如黛》少兒美術教育繪畫課件創(chuàng)意教程教案
- 課程分享 課件
- 西南林業(yè)大學《比較文學概論》2021-2022學年第一學期期末試卷
- 西京學院《網(wǎng)絡數(shù)據(jù)庫》2021-2022學年期末試卷
- 西京學院《建筑設備》2021-2022學年第一學期期末試卷
- 2024年教師系列中高級職稱評審有關政策解讀附件10
- 西京學院《國際結算與貿(mào)易融資》2022-2023學年第一學期期末試卷
- 西京學院《單片機原理及應用》2022-2023學年期末試卷
- 西華師范大學《中小學綜合實踐活動》2023-2024學年第一學期期末試卷
- 汽車eps行業(yè)國內外市場發(fā)展前景分析與投資風險預測報告
- 短視頻運營實戰(zhàn):抖音短視頻運營
- 園長進班指導制度方案及流程
- 裝修垃圾清運處置方案
- JC-T 2536-2019水泥-水玻璃灌漿材料
- HG-T 20583-2020 鋼制化工容器結構設計規(guī)范
- 品牌授權協(xié)議書
- 鄭州人才公寓策劃方案
- 藝術設計就業(yè)職業(yè)生涯規(guī)劃
- 特殊餐食種類課件
- 《狙擊手》和《新神榜楊戩》電影賞析
評論
0/150
提交評論