版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人工智能
ObjectivesInthisclass,youwilllearnaboutWhatisartificialintelligenceKnowledgerepresentationRecognitiontasksReasoningtasksRoboticsIntroductionto
ArtificialIntelligenceWhatisintelligence?Thecapacitytoacquireandapplyknowledge.Thefacultyofthoughtandreason.Theabilitytolearnorunderstandortodealwithnewortryingsituations.MajorSubdivisionsofAIUnderstandingThinkingActingAI:UnderstandingComputerVision–understandingwhatyouseeAI:ThinkingCapturingStructureandReachingGoalsMachineLearningPlanningClusteringAI:ActingRoboticsConsiderAIuseinonecompanySearchSponseredLinksGoogleNewsGooglemapsIntroductionTuringtestAtestforintelligentbehaviorofmachinesAllowsahumanbeingtointerrogatetwoentities,bothhiddenfromtheinterrogatorAhumanbeingAmachine(acomputer)TheTuringTestIntroduction(continued)Turingtest(continued)Iftheinterrogatorisunabletodeterminewhichentityisthehumanbeingandwhichisthecomputer,thecomputerhaspassedthetestArtificialintelligencecanbethoughtofasconstructingcomputermodelsofhumanintelligenceADivisionofLaborCategoriesoftasksComputationaltasksRecognitiontasksReasoningtasksComputationaltasksTasksforwhichalgorithmicsolutionsexistComputersarebetter(fasterandmoreaccurate)thanhumanbeingsADivisionofLabor(continued)RecognitiontasksSensory/recognition/motor-skillstasksHumanbeingsarebetterthancomputersReasoningtasksRequirealargeamountofknowledgeHumanbeingsarefarbetterthancomputersFigure14.2HumanandComputerCapabilitiesKnowledgeRepresentationKnowledge:AbodyoffactsortruthsForacomputertomakeuseofknowledge,itmustbestoredwithinthecomputerinsomeformKnowledgeRepresentation(continued)KnowledgerepresentationschemesNaturallanguageFormallanguagePictorialGraphicalKnowledgeRepresentation(continued)RequiredcharacteristicsofaknowledgerepresentationschemeAdequacyEfficiencyExtendabilityAppropriatenessRecognitionTasksAneuronisacellinthebraincapableofReceivingstimulifromotherneuronsthroughitsdendritesSendingstimulitootherneuronsthroughitsaxonFigure14.4ANeuronRecognitionTasks(continued)Ifthesumofactivatingandinhibitingstimulireceivedbyaneuronequalsorexceedsitsthresholdvalue,theneuronsendsoutitsownsignalEachneuroncanbethoughtofasanextremelysimplecomputationaldevicewithasingleon/offoutputRecognitionTasks(continued)Humanbrain:AconnectionistarchitectureAlargenumberofsimple“processors”withmultipleinterconnectionsVonNeumannarchitectureAsmallnumber(maybeonlyone)ofverypowerfulprocessorswithalimitednumberofinterconnectionsbetweenthemRecognitionTasks(continued)Artificialneuralnetworks(neuralnetworks)SimulateindividualneuronsinhardwareConnecttheminamassivelyparallelnetworkofsimpledevicesthatactsomewhatlikebiologicalneuronsTheeffectofaneuralnetworkmaybesimulatedinsoftwareonasequential-processingcomputerRecognitionTasks(continued)NeuralnetworkEachneuronhasathresholdvalueIncominglinescarryweightsthatrepresentstimuliTheneuronfireswhenthesumoftheincomingweightsequalsorexceedsitsthresholdvalueAneuralnetworkcanbebuilttorepresenttheexclusiveOR,orXOR,operationFigure14.5OneNeuronwithThreeInputsFigure14.8TheTruthTableforXORRecognitionTasks(continued)NeuralnetworkBoththeknowledgerepresentationand“programming”arestoredasweightsoftheconnectionsandthresholdsoftheneuronsThenetworkcanlearnfromexperiencebymodifyingtheweightsonitsconnectionsReasoningTasksHumanreasoningrequirestheabilitytodrawonalargebodyoffactsandpastexperiencetocometoaconclusionArtificialintelligencespecialiststrytogetcomputerstoemulatethischaracteristicIntelligentSearchingState-spacegraphAfteranyonenodehasbeensearched,thereareahugenumberofnextchoicestotryThereisnoalgorithmtodictatethenextchoiceState-spacesearchFindsasolutionpaththroughastate-spacegraphFigure14.12AState-SpaceGraphwithExponentialGrowthIntelligentSearching(continued)EachnoderepresentsaproblemstateGoalstate:ThestatewearetryingtoreachIntelligentsearchingappliessomeheuristic(oraneducatedguess)toEvaluatethedifferencesbetweenthepresentstateandthegoalstateMovetoanewstatethatminimizesthosedifferencesSwarmIntelligenceSwarmintelligenceModelsthebehaviorofacolonyofantsSwarmintelligencemodelUsessimpleagentsthatOperateindependentlyCansensecertainaspectsoftheirenvironmentCanchangetheirenvironmentMay“evolve”andacquireadditionalcapabilitiesovertimeIntelligentAgentsAnintelligentagent:SoftwarethatinteractscollaborativelywithauserInitiallyanintelligentagentsimplyfollowsusercommandsIntelligentAgents(continued)OvertimeAgentinitiatescommunication,takesaction,andperformstasksonitsownusingitsknowledgeoftheuser’sneedsandpreferencesExpertSystemsRule-basedsystemsAlsocalledexpertsystemsorknowledge-basedsystemsAttempttomimicthehumanabilitytoengagepertinentfactsandcombinetheminalogicalwaytoreachsomeconclusionExpertSystems(continued)Arule-basedsystemmustcontainAknowledgebase:SetoffactsaboutsubjectmatterAninferenceengine:MechanismforselectingrelevantfactsandforreasoningfromtheminalogicalwayManyrule-basedsystemsalsocontainAnexplanationfacility:AllowsusertoseeassertionsandrulesusedinarrivingataconclusionExpertSystems(continued)Afactcanbe
AsimpleassertionArule:Astatementoftheformif...then...Modusponens(methodofassertion)ThereasoningprocessusedbytheinferenceengineExpertSystems(continued)InferenceenginescanproceedthroughForwardchainingBackwardchainingForwardchainingBeginswithassertionsandtriestomatchthoseassertionsto“if”clausesofrules,therebygeneratingnewassertionsExpertSystems(continued)BackwardchainingBeginswithaproposedconclusionTriestomatchitwiththe“then”clausesofrulesThenlooksatthecorresponding“if”clausesTriestomatchthosewithassertionsorwiththe“then”clausesofotherrulesExpertSystems(continued)Arule-basedsystemisbuiltthroughaprocesscalledknowledgeengineering
BuilderofsystemacquiresinformationforknowledgebasefromexpertsinthedomainRoboticsRobot:DevicethatcangathersensoryinformationautonomouslyManyusesforrobots(automanufacturing,bombdisposal,exploration,microsurgery)Deliberativestrategy:RobothasaninternalrepresentationofitsenvironmentReactivestrategy:
Usesheuristicalgorithmstoallowrobottoresponddirectly
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 花店租賃花香四溢合同
- 橋梁加固臨時施工合同范本
- 2025集體合同工時制度
- 豪華住宅轉(zhuǎn)讓合同示例
- 智能交通系統(tǒng)靜壓樁施工合同
- 美容美發(fā)師聘用合同書
- 合同檔案管理培訓(xùn)
- 小區(qū)監(jiān)控崗安全培訓(xùn)
- 泰山護(hù)理職業(yè)學(xué)院《足球教學(xué)理論與實(shí)踐III》2023-2024學(xué)年第一學(xué)期期末試卷
- 小班安全《我等媽媽來接》教案
- 2024年高標(biāo)準(zhǔn)農(nóng)田建設(shè)土地承包服務(wù)協(xié)議3篇
- 閱讀理解(專項(xiàng)訓(xùn)練)-2024-2025學(xué)年湘少版英語六年級上冊
- 民用無人駕駛航空器產(chǎn)品標(biāo)識要求
- 2024年醫(yī)院產(chǎn)科工作計劃例文(4篇)
- 2024-2025學(xué)年九年級英語上學(xué)期期末真題復(fù)習(xí) 專題09 單詞拼寫(安徽專用)
- 無創(chuàng)通氣基本模式
- 江西省贛州市尋烏縣2023-2024學(xué)年八年級上學(xué)期期末檢測數(shù)學(xué)試卷(含解析)
- 《臨床放射生物學(xué)》課件
- 腸造口還納術(shù)手術(shù)配合
- 2024年中考語文試題分類匯編:詩詞鑒賞(學(xué)生版)
- 科學(xué)計算語言Julia及MWORKS實(shí)踐 課件 3-MWORKS簡介
評論
0/150
提交評論