人工智能課件_第1頁
人工智能課件_第2頁
人工智能課件_第3頁
人工智能課件_第4頁
人工智能課件_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人工智能

ObjectivesInthisclass,youwilllearnaboutWhatisartificialintelligenceKnowledgerepresentationRecognitiontasksReasoningtasksRoboticsIntroductionto

ArtificialIntelligenceWhatisintelligence?Thecapacitytoacquireandapplyknowledge.Thefacultyofthoughtandreason.Theabilitytolearnorunderstandortodealwithnewortryingsituations.MajorSubdivisionsofAIUnderstandingThinkingActingAI:UnderstandingComputerVision–understandingwhatyouseeAI:ThinkingCapturingStructureandReachingGoalsMachineLearningPlanningClusteringAI:ActingRoboticsConsiderAIuseinonecompanySearchSponseredLinksGoogleNewsGooglemapsIntroductionTuringtestAtestforintelligentbehaviorofmachinesAllowsahumanbeingtointerrogatetwoentities,bothhiddenfromtheinterrogatorAhumanbeingAmachine(acomputer)TheTuringTestIntroduction(continued)Turingtest(continued)Iftheinterrogatorisunabletodeterminewhichentityisthehumanbeingandwhichisthecomputer,thecomputerhaspassedthetestArtificialintelligencecanbethoughtofasconstructingcomputermodelsofhumanintelligenceADivisionofLaborCategoriesoftasksComputationaltasksRecognitiontasksReasoningtasksComputationaltasksTasksforwhichalgorithmicsolutionsexistComputersarebetter(fasterandmoreaccurate)thanhumanbeingsADivisionofLabor(continued)RecognitiontasksSensory/recognition/motor-skillstasksHumanbeingsarebetterthancomputersReasoningtasksRequirealargeamountofknowledgeHumanbeingsarefarbetterthancomputersFigure14.2HumanandComputerCapabilitiesKnowledgeRepresentationKnowledge:AbodyoffactsortruthsForacomputertomakeuseofknowledge,itmustbestoredwithinthecomputerinsomeformKnowledgeRepresentation(continued)KnowledgerepresentationschemesNaturallanguageFormallanguagePictorialGraphicalKnowledgeRepresentation(continued)RequiredcharacteristicsofaknowledgerepresentationschemeAdequacyEfficiencyExtendabilityAppropriatenessRecognitionTasksAneuronisacellinthebraincapableofReceivingstimulifromotherneuronsthroughitsdendritesSendingstimulitootherneuronsthroughitsaxonFigure14.4ANeuronRecognitionTasks(continued)Ifthesumofactivatingandinhibitingstimulireceivedbyaneuronequalsorexceedsitsthresholdvalue,theneuronsendsoutitsownsignalEachneuroncanbethoughtofasanextremelysimplecomputationaldevicewithasingleon/offoutputRecognitionTasks(continued)Humanbrain:AconnectionistarchitectureAlargenumberofsimple“processors”withmultipleinterconnectionsVonNeumannarchitectureAsmallnumber(maybeonlyone)ofverypowerfulprocessorswithalimitednumberofinterconnectionsbetweenthemRecognitionTasks(continued)Artificialneuralnetworks(neuralnetworks)SimulateindividualneuronsinhardwareConnecttheminamassivelyparallelnetworkofsimpledevicesthatactsomewhatlikebiologicalneuronsTheeffectofaneuralnetworkmaybesimulatedinsoftwareonasequential-processingcomputerRecognitionTasks(continued)NeuralnetworkEachneuronhasathresholdvalueIncominglinescarryweightsthatrepresentstimuliTheneuronfireswhenthesumoftheincomingweightsequalsorexceedsitsthresholdvalueAneuralnetworkcanbebuilttorepresenttheexclusiveOR,orXOR,operationFigure14.5OneNeuronwithThreeInputsFigure14.8TheTruthTableforXORRecognitionTasks(continued)NeuralnetworkBoththeknowledgerepresentationand“programming”arestoredasweightsoftheconnectionsandthresholdsoftheneuronsThenetworkcanlearnfromexperiencebymodifyingtheweightsonitsconnectionsReasoningTasksHumanreasoningrequirestheabilitytodrawonalargebodyoffactsandpastexperiencetocometoaconclusionArtificialintelligencespecialiststrytogetcomputerstoemulatethischaracteristicIntelligentSearchingState-spacegraphAfteranyonenodehasbeensearched,thereareahugenumberofnextchoicestotryThereisnoalgorithmtodictatethenextchoiceState-spacesearchFindsasolutionpaththroughastate-spacegraphFigure14.12AState-SpaceGraphwithExponentialGrowthIntelligentSearching(continued)EachnoderepresentsaproblemstateGoalstate:ThestatewearetryingtoreachIntelligentsearchingappliessomeheuristic(oraneducatedguess)toEvaluatethedifferencesbetweenthepresentstateandthegoalstateMovetoanewstatethatminimizesthosedifferencesSwarmIntelligenceSwarmintelligenceModelsthebehaviorofacolonyofantsSwarmintelligencemodelUsessimpleagentsthatOperateindependentlyCansensecertainaspectsoftheirenvironmentCanchangetheirenvironmentMay“evolve”andacquireadditionalcapabilitiesovertimeIntelligentAgentsAnintelligentagent:SoftwarethatinteractscollaborativelywithauserInitiallyanintelligentagentsimplyfollowsusercommandsIntelligentAgents(continued)OvertimeAgentinitiatescommunication,takesaction,andperformstasksonitsownusingitsknowledgeoftheuser’sneedsandpreferencesExpertSystemsRule-basedsystemsAlsocalledexpertsystemsorknowledge-basedsystemsAttempttomimicthehumanabilitytoengagepertinentfactsandcombinetheminalogicalwaytoreachsomeconclusionExpertSystems(continued)Arule-basedsystemmustcontainAknowledgebase:SetoffactsaboutsubjectmatterAninferenceengine:MechanismforselectingrelevantfactsandforreasoningfromtheminalogicalwayManyrule-basedsystemsalsocontainAnexplanationfacility:AllowsusertoseeassertionsandrulesusedinarrivingataconclusionExpertSystems(continued)Afactcanbe

AsimpleassertionArule:Astatementoftheformif...then...Modusponens(methodofassertion)ThereasoningprocessusedbytheinferenceengineExpertSystems(continued)InferenceenginescanproceedthroughForwardchainingBackwardchainingForwardchainingBeginswithassertionsandtriestomatchthoseassertionsto“if”clausesofrules,therebygeneratingnewassertionsExpertSystems(continued)BackwardchainingBeginswithaproposedconclusionTriestomatchitwiththe“then”clausesofrulesThenlooksatthecorresponding“if”clausesTriestomatchthosewithassertionsorwiththe“then”clausesofotherrulesExpertSystems(continued)Arule-basedsystemisbuiltthroughaprocesscalledknowledgeengineering

BuilderofsystemacquiresinformationforknowledgebasefromexpertsinthedomainRoboticsRobot:DevicethatcangathersensoryinformationautonomouslyManyusesforrobots(automanufacturing,bombdisposal,exploration,microsurgery)Deliberativestrategy:RobothasaninternalrepresentationofitsenvironmentReactivestrategy:

Usesheuristicalgorithmstoallowrobottoresponddirectly

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論