![工程基礎(chǔ)力學 Ⅱ 動力學 課件全套 李晨亮 Chapter 1 Kinematics of a Particle-Chapter 10 Vibrations_第1頁](http://file4.renrendoc.com/view12/M02/26/39/wKhkGWaJUFyADOiCAABqW0b2Org260.jpg)
![工程基礎(chǔ)力學 Ⅱ 動力學 課件全套 李晨亮 Chapter 1 Kinematics of a Particle-Chapter 10 Vibrations_第2頁](http://file4.renrendoc.com/view12/M02/26/39/wKhkGWaJUFyADOiCAABqW0b2Org2602.jpg)
![工程基礎(chǔ)力學 Ⅱ 動力學 課件全套 李晨亮 Chapter 1 Kinematics of a Particle-Chapter 10 Vibrations_第3頁](http://file4.renrendoc.com/view12/M02/26/39/wKhkGWaJUFyADOiCAABqW0b2Org2603.jpg)
![工程基礎(chǔ)力學 Ⅱ 動力學 課件全套 李晨亮 Chapter 1 Kinematics of a Particle-Chapter 10 Vibrations_第4頁](http://file4.renrendoc.com/view12/M02/26/39/wKhkGWaJUFyADOiCAABqW0b2Org2604.jpg)
![工程基礎(chǔ)力學 Ⅱ 動力學 課件全套 李晨亮 Chapter 1 Kinematics of a Particle-Chapter 10 Vibrations_第5頁](http://file4.renrendoc.com/view12/M02/26/39/wKhkGWaJUFyADOiCAABqW0b2Org2605.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter1
KinematicsofaParticle§1.1Motionequationofaparticle§1.2
Velocityandaccelerationofaparticle
Maincontents1.1MotionequationofaparticleThreetypicalmotionequation(1)Motionequationusing
vector(2)Motionequationusingrectangularcoordinate1.1Motionequationofaparticle(3)MotionequationusingnaturalcoordinateThreetypicalmotionequationThecrankofellipticcompassescanrotatearoundfixedaxisO,theendAishingedwithBC;ThepointsBandCcanmovealongtheverticalslidingchutes,respectively.FindthetrajectoryequationofaarbitrarypointMonBC.KnownExample11.1MotionequationofaparticleSolution:Consideranarbitraryposition,thecoordinateofMcanbeexpressedasfollowing:Eliminate
intheaboveequations,thetrajectoryequationofMcanbeobtainedas:
1.1Motionequationofaparticle1.2Velocityandaccelerationofaparticle(1)DefinitionforvelocityandaccelerationofaparticleusingvectorDisplacement:Velocity:Acceleration:(2)Definitionforvelocityandaccelerationofaparticleontherectangularcoordinate(3)
ProjectionforvelocityandaccelerationofaparticleonthenaturalaxesTangentNormalplaneOsculatingplanePrincipalnormalSubnormal(a)Naturalcoordinatesystem1.2Velocityandaccelerationofaparticle(3)
Projectionforvelocityandaccelerationofaparticleonthenaturalaxes(b)Velocityofaparticle(c)AccelerationofaparticleThefirstcomponentrepresentsthechangerateofspeedmagnitudefortheparticle,notedas()TangentialaccelerationThesecondcomponentrepresentsthechangerateofspeeddirectionfortheparticle,notedas()Normalacceleration1.2Velocityandaccelerationofaparticle(3)
Projectionforvelocityandaccelerationofaparticleonthenaturalaxes◆Tangentialacceleration◆NormalaccelerationTangentialacceleration
representsthechangerateofspeedmagnitudetotime,itsalgebraicvalueisequaltothefirstderivativeofthealgebraicvalueofvelocitytotime,orthesecondderivativeofcurvilinearcoordinatetotime,itisalongthetangentoftrajectory.
1.2Velocityandaccelerationofaparticle(1)Thevectormethodisusedtodeduceformula;(2)Therectangularcoordinateandnaturalcoordinatemethodsareusedtocalculate:Theadvantageofnaturalcoordinatemethodistheclearphysicalmeaningandmoresimplethanrectangularcoordinatemethod.Thedisadvantageisthetrajectorymustbeknown,whichlimitstheapplicability.Theadvantageofrectangularcoordinatemethodisthewideapplicability(whichcanonlybeusedwhenthetrajectoryisunknown).Thedisadvantageismorecomplexthannaturalcoordinatemethod.SummaryBothofthetwomethodsareneedtosolvesomeproblems
TheEnd
Chapter2FundamentalKinematicsofaRigidBody§2.1Translationalmotionofarigidbody§2.2Rotationofarigidbodyaboutafixedaxis§2.3Velocityandaccelerationofapointin
arigidbodyrotatingaboutafixedaxis
Maincontents1.
DefinitionThedirectionofthelinelinkingarbitrarytwopointsintherigidbodyneverchangesduringitsmotion.2.1Translationalmotionofarigidbody2.
FeaturesDifferentiate:Allparticlesinarigidbodywithtranslationalmotionhavethesametrajectories.Arbitrarytwoparticlesinarigidbodywithtranslationalmotionhavethesamevelocitiesandaccelerationsinthesameinstant.Themotionregularitiesofalltheparticlesinarigidbodywithtranslationalmotionarecompletelysame,sothetranslationofarigidbodycanbesimplifiedtothemotionofaparticleinit.2.1TranslationalmotionofarigidbodyExamplesoftranslationalmotion
2.1Translationalmotionofarigidbody1.
DefinitionTherearetwofixedpointsduringthemovementofarigidbody,itiscalledtherotationaboutafixedaxis.Theaxisisafixedlinethroughthetwofixedpoints.2.2Rotationofarigidbodyaboutafixedaxis2.FeaturesThedistancesbetweeneverypointintherigidbodyandthefixedaxisremainconstants.Everypointintherigidbodywhichisnotonthisaxismovesalongacircularpathinaplaneperpendiculartothisfixedaxis.3.Equationofrotationφ
isanalgebraicquantity.Signdefinitionofφ:followsright-handrule.φ
isthemonotropiccontinuousfunctionoftimet,whentherigidbodyrotates.
2.2Rotationofarigidbodyaboutafixedaxis4.Angularvelocityandangularaccelerationω
isanalgebraicquantitySigndefinitionofω:followsright-handrule.Unit:(1)Angularvelocity:
Inordertodescribethespeedanddirectionoftherotationofarigidbody,theangularvelocityisdefinedas,2.2Rotationofarigidbodyaboutafixedaxis4.Angularvelocityandangularacceleration(2)Angularacceleration:
Inordertodescribethespeedofangularvelocitychangedwithtimeoftherotationofarigidbody,theangularaccelerationisdefinedas,α
isanalgebraicquantitySigndefinitionofα:followsright-handrule.Unit:Arigidbodyhasacceleratedrotationwhenαand
havethesamesigns,deceleratedrotationwhenα
and
haveoppositesigns.
=const,uniformrotation.
α
=const,rotationwithconstantangularacceleration.2.2Rotationofarigidbodyaboutafixedaxis2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis1.Themotionequationdefinedbycurvilinearcoordinate
2.Velocityofapoint
Differentiatetheexpressionabovewithrespecttotimet,gives
∵,
,∴itcanbeobtainedas,Directionofvelocity:alongthetangentline,pointtotherotationdirection.3.AccelerationofapointNormalacceleration:Tangentialacceleration:TheaccelerationofpointM:Thedirectionofacceleration:2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis4.Thedistributionregularitiesofthevelocityandaccelerationintherotatedrigidbody(1)Ateverytime,thevelocityandaccelerationofapointareproportionaltoR.(2)Ateverytime,thedirectionsofthevelocityandaccelerationofapointareperpendiculartoR.Theangle
betweentheaccelerationofanypointanditsradiusisidentical.2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis
TheEnd
Chapter3ComplexMotionofParticle(orPoint)
§3.1Basicconceptofcomplexmotionofparticle
§
3.2Velocitycompositiontheoremofparticle§
3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation§
3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Maincontents1.
Whatiscomplexmotionofparticle?Motionisrelative.Amotionrelativetoareferenceobjectcanbecomposedofseveralsimplemotionsrelativetootherreferenceobjects.Themotioniscalled
complexmotion.2.ProblemstosolvebytheoryofcomplexmotionofparticleAcomplexmotioncanbedecomposedintotwosimplemotions.Thevaluesofcomplexmotioncanbecomposedbythoseoftwosimplemotions.Therelationsofthemotionofeverycomponentinthemovingmechanism.Therelationoftwomovingobjectswithoutdirectiveconnection.(1)AmovingpointApointintheresearchingobject.(2)Tworeferencesystems(3)Three
kindsof
motionsApoint,tworeferencesystems,andthreekindsofmotionsFixedreferencesystem:Areferencesystemfixedtotheearthground.Movingreferencesystem:
Areferencesystemfixedtoamovingobjectrelativetotheearthground.Absolutemotion:Motionofthemovingpointrelativetothefixedreferencesystem.Relativemotion:
Motionofthemovingpointrelativetothemovingreferencesystem.Transportmotion:Motionofthemovingreferencesystemrelativetothefixedreferencesystem.
3.1BasicconceptofcomplexmotionofparticleAbsolutemotionRelativemotionTransportmotionBothofabsolutemotionandrelativemotionaremotionsofaparticle.Transportmotionismotionofreferenceobject,actuallymotionofarigidbody.
3.1BasicconceptofcomplexmotionofparticleCorrespondingtoabsolutemotion:AbsolutetrajectoryAbsolute
velocityAbsoluteaccelerationCorrespondingtorelativemotion:
RelativetrajectoryRelativevelocityRelativeaccelerationThereisn’ttrajectoryfortransportmotion,becauseitisn’taparticle,butarigidbody.Correspondingtotransportmotion:TransportvelocityTransportaccelerationTransportvelocity
and
transportacceleration
arethevelocityandaccelerationofthepointinthemovingreferencesystemcoincidingwiththemovingpoint(transportpoint)
relativetothefixedreferencesystematanyinstantoftime.
3.1BasicconceptofcomplexmotionofparticleExample
3-1Crankrockermechanism,thecrankOAisconnectedtothesleevebypinA,andthesleeveissetontherockerO1B.WhenthecrankrotatesaroundtheOaxiswithangularvelocityω,therockerO1BisdriventoswingaroundtheO1axisthroughthesleeve.AnalyzethemotionoftheApoint.
3.1BasicconceptofcomplexmotionofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.1BasicconceptofcomplexmotionofparticleHowtoselectthemovingpointandmovingsystem1.Themovingsystemcanberegardedasaninfiniterigidbody,andthebasicmotionoftherigidbodyistranslationalandfixed-axisrotation.Therefore,themovingsystemisgenerallytakenasthecoordinatesystemoftranslationalmotionorfixed-axisrotation.2.Themovingpointandthemovingreferencecannotbechosenonthesameobject,otherwisetherelativemotionofthemovingpointwithrespecttothemovingreferencewilldisappear.3.Themovingpointmustalwaysbethesamepointinthesystem,andstudyitsmotionatdifferentmoments.Itisnotallowedtotakeapointatoneinstantandanotherpointasthemovingpointatthenextinstant.1.TheoremAtanyinstantoftime,theabsolutevelocityofamovingpointisequaltothegeometricsumofitsrelativevelocityandtransportvelocity.Thisisthe
velocitycompositiontheoremofpoint.
Theabsolutevelocityofamovingpointcanbedeterminedbythediagonallineoftheparallelogramcomposedbyitstransportvelocityandrelativevelocity.
Thisisthe
parallelogramofvelocity.
3.2Velocitycompositiontheoremofparticle
moveto
2.Provement
3.2VelocitycompositiontheoremofparticleExample
3-2
Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularvelocityω1oftherockingbarwhenthecrankmovestothehorizontalposition.
3.2VelocitycompositiontheoremofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.2Velocitycompositiontheoremofparticle3.VelocityanalysisvavevrAbsolutevelocityva:va=OA·ω
=rω,
Direction:verticaltoOA,plumbedupwardsTransportvelocity
ve:ve
istheunknownquantity,andneedtobesolvedDirection:verticaltoO1BRelativevelocityvr:themagnitudeisunknownDirection:alongtherockingbarO1B
Accordingtothevelocitycompositiontheoremofapoint
3.2Velocitycompositiontheoremofparticle∵∴Supposetheangularvelocityoftherockingbaratthemomentisω1,yieldsSovavevr
3.2Velocitycompositiontheoremofparticle1.Relativeandabsolutederivativeofvector●MOxyzisafixedcoordinatesystem,andO1x1y1z1isamotioncoordinatesystem,theradiusvectorofthemovingpointMinthemotionsystemisWetakethetimederivativeinthefixedsystemtoobtainThisistheabsoluterateofchangeofthevectorr1Takethederivativeofr1withrespecttotimeinthemotionsystemtoobtainThisistherelativerateofchangeofthevectorr13.3Accelerationcompositiontheoremwhenthetransportmotionistranslation2.Threekindsofaccelerations(1)Absoluteacceleration(2)Relativeacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M2.Threekindsofaccelerations(3)Transportacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M3.AccelerationcompositiontheoremWhenthemotionsystemistranslatingmotion,andi1,j1,k1
areconstantvectors,andtheirmagnitudesanddirectionsareconstant,sotheirtimederivativesareallzero,wecangetAccelerationcompositiontheoremwhenthetransportmotionistranslation3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●MExample
3-3
Aplanemechanismshowninthefigure,thecrankOA=r,rotatesuniformlywithangularvelocityω0.SleeveAcanslidsalongthebarBC.BC=DE,且BD=CE=l.FindtheangularvelocityandangularaccelerationofBDatthemomentshowninthefigure.ABCDEOω0ωαSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystemMovingreferencesystem-Cx′y′,fixedtothebar
BC.2.MotionanalysisTransportmotion-translationMovingpoint-slideblock
A.Fixedreferencesystem-
fixedtothebase.ABCDEOω0ωαx'y'Absolutemotion-CircularmotionwithcentreORelativemotion-straightlinemotionalongBCABCDEOω0ωαvBvevavr3.VelocityanalysisyieldsSotheangularvelocityof
BDAbsolute
velocity
va:va=ω0r,verticalto
OA
downwards.
Transportvelocity
ve:ve=
vB,verticalto
BDrightdownwands.
Relativevelocity
vr:magnitudeunknown,along
BCleftEmployingthetheoremofcompositionofvelocities4.AccelerationanalysisAbsoluteacceleration
aa:aa=ωor
,along
OA,pointtoOTransportaccelerationae:tangentialcomponentaet:sametoaBt,magnitude
unknown,verticaltoDB,
supposedownwardsRelativeacceleration
ar:magnitude
unknown,along
BC,
supposetoleftnormalcomponentaen:aen
=aBn=
ω2l
=ωo2r2
/l,alongDB,
pointtoDaaarABCDEOω0ωα
Projecttoaxisy,
yieldsyieldsApplyingthecompositiontheoremofaccelerationsSotheangularaccelerationof
BD:
aaarABCDEOωαyAfixedcoordinatesystemOxyzandmotioncoordinatesystemOx1y1z1,letthemovingpointMmoveinthemotionsystemOx1y1z1,andthemotionsystemOx1y1z1rotatesaboutthez-axisofthefixedsystemwithangularvelocityωandangularaccelerationε●MBasedonthepreviousproofofthevelocitycompositiontheorem,wehave
TherelativevelocityandrelativeaccelerationofthemovingpointM3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationAndthen
Basedonthevelocitycompositiontheorem:AccordingtothePoissonformula:3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Coriolisacceleration:Thisistheaccelerationcompositiontheoremwhenthetransportmotionisrotation.3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationExample
3-4Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularaccelerationα1oftherockingbarwhenthecrankmovestothehorizontalposition.
Basedonthe
velocityanalysisobtainedfromlastclass,weknowthatSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Movingreferencesystem-O1x1y1,fixedtorockingbarO1B.Movingpoint-slideblock
A.vavevry1x1Fixedreferencesystem-Fixedtothe
base2.AccelerationanalysisAbsoluteacceleration
aa:
aa
=ω2r
,along
OA,pointto
O.Relative
acceleration
ar:magnitude
is
unknown
,suppose
it
is
along
O1B
upwards.
Tangential
component
aet:magnitude
is
unknown,
vertical
to
O1B,supposerightdownwardsTransport
acceleration:Normal
component
:
along
O1A,point
to
O1Coriolis
acceleration
aC:verticaltoO1B,showninthefigurex'y'O1Oφωω1ABaaaraCProjectitto
O1x'yieldsTheangularaccelerationofrockingbar:α1Applyingtheaccelerationcompositiontheoremx'y'O1Oφωω1ABaaaraCor
TheEnd
Chapter4
PlanarMotionofaRigidBody§
4.1Basicconceptanddecompositionofrigidbodyplanarmotion
Maincontents§4.2
Velocityofanypointinaplanarmotion§4.3
Accelerationofanypointinaplanarmotion1.Whatisplanarmotionofarigidbody?Thedistancebetweenanypointinarigidbodyandafixedplanealwayskeepsunchangedduringitsmotion.Thismotionofrigidbodyiscalled
planarmotionofarigidbody.4.1Basicconceptanddecompositionofrigidbodyplanarmotion2.SimplificationofaplanarmotionTheplanarmotionofarigidbodycanbesimplifiedtoamotionofaplanegraphintheplaneitselfwithoutconsideringitsthickness.
(a)Connectingrodmotion(b)Simplificationofconnectingrodmotion4.1Basicconceptanddecompositionofrigidbodyplanarmotion3.EquationsofplanarmotionSTodeterminethemotionofaplanegraph,choosethefixedreferencesystemOxy,anarbitrarypointO'intheplanegraphS,anarbitrarylinesegmentO'M.Todeterminetheplanarmotionofarigidbody,onlythepositionofthelinesegmentO'Minthisgraphisneededtobedetermined.EquationsofplanarmotionAplanemotioncanberegardedasthecompositionofa
translation
androtation.4.1Basicconceptanddecompositionofrigidbodyplanarmotion4.Planarmotioncanbedecomposedintotranslationandrotation
Aplanemotionofarigidbodycanbedecomposedintoa
translationwithabasicpointanda
rotation
aboutanaxisthatpassesthroughthebasicpoint.Thevelocityandaccelerationofthe
translation
withabasicpoint
intheplanegraphdependson
theselectionof
thebasicpoint,however,theangularvelocityandaccelerationoftherotationabouttheselectedbasicpoint
doesn’tdependon
thechoiceofthebasicpoint.4.1BasicconceptanddecompositionofrigidbodyplanarmotionAThevelocityofpointAintheplanegraphSis,andtherotationalvelocityoftheplanegraphis.SelectAasthebasicpoint;ThemovingreferencesystemattachedtopointA;Thetransportmotionistranslationwiththebasicpoint
A;Therelativemotionisrotationaboutthebasicpoint
A.(1)Basicpointmethod
·BDeterminethevelocityofpointBintheplanegraph.4.2VelocityofanypointinaplanarmotionABTheorem:Forplanarmotionofarigidbody,thevelocityofanypointinthegraphcanbeobtainedasthevectorsumofthevelocityofthebasicpointandtherelativerotationalvelocitywithrespecttothebasicpoint.4.2Velocityofanypointinaplanarmotion
isverticaltothelinkofABallthetime,sotheprojectionofonABisvanish.Thevelocityprojectiontheorem:thevelocityprojectionsofanytwopointinaplanegraphonthelinelinkingthesetwopointsareidentical.(2)VelocityprojectiontheoremAB4.2Velocityofanypointinaplanarmotiona.Background
Ifapointwhosevelocityiszeroisselectedasthebasicpoint,theprocessoffindingthevelocityofanypointwillbegreatlysimplified.Therefore,itisnaturaltoaskifsuchapointexistsinanyinstant.Ifitdoesexist,howtofindsuchapoint?b.InstantaneouscenterofvelocityAtanyinstant,itmustexistasolepointwhosevelocityiszerointheplanegraphoritsexpandingarea,whichiscalledtheinstantaneousvelocitycenterofthisplanegraphatthisinstant.Foraplanegraph,itsinstantaneousvelocitycenteralwaysexistsuniquely.
(3)Instantaneouscenterofvelocitymethod4.2Velocityofanypointinaplanarmotionc.InstantaneouscenterofvelocitymethodConsideraplanegraph.TheinstantaneousvelocitycenterisP,andtheangularvelocityoftheplanegraphis.SelectinstantaneousvelocitycenterPisabasicpoint,thevelocityofanarbitrarypointAintheplanegraph:4.2Velocityofanypointinaplanarmotiond.MethodstodeterminetheinstantaneousvelocitycenterPA(1)Whenthevelocityofapointandtheangularvelocity
oftheplanegraphareknown,theinstantaneousvelocitycenter(pointP)canbedetermined,
pointPisinthedirectionofthelineformedbyrotatingthethrough90ointhedirectionof
aroundpointA.4.2Velocityofanypointinaplanarmotion(2)Whenaplanegraphrollsalongafixedsurfacewithoutslipping,thecontactpointPbetweenthegraphandthefixedsurfacewillbetheinstantaneousvelocitycenter.
(3)WhenthedirectionsofthevelocitiesattwopointsAandBinagraphareknown,andisnotparallelto,drawlinesfromAandBperpendiculartorespectively,andthecrosspointPofthesetwolineswillbetheinstantaneousvelocitycenter.ABP4.2Velocityofanypointinaplanarmotion(4)WhenthevelocitiesoftwopointsAandBaregivenatanyinstant,and.Therearethreecases:ABP
Whenandpointtothesamedirection,but.DrawtheextensionlineofAB,thelinkinglineoftheendingsofand,thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:◆ω
◆Whenandhaveoppositedirections,drawthelinkinglineoftheendingsofand,andthelineconnectingAB.Thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:
ω4.2VelocityofanypointinaplanarmotionBPAB(5)ThevelocitiesoftwopointsAandBpointtothesamedirectionatanyinstant,,,buttheyarenotperpendiculartolineAB.Inthiscase,theinstantaneousvelocitycenterisindefinitelyfaraway,andtheangularvelocity
=0,i.e.allpointinthefigurehavethesamevelocityatthisinstantoftime.Suchamotioniscalledinstantaneoustranslation,buttheiraccelerationsarenotequal.
When,
theinstantaneousvelocitycenterisindefinitelyfaraway.Theplanegraphhasinstantaneoustranslation,=0,allpointsinthegraphhavethesamevelocityatthisinstantoftime,buttheiraccelerationsarenotequal.◆ω4.2VelocityofanypointinaplanarmotionAABAAttheinstant,theangularvelocityofthegraphis,angularaccelerationis,accelerationofapointAis
.DeterminetheaccelerationofanarbitrarypointBinthegraph.·
4.3
AccelerationofanypointinaplanarmotionBA1.
:
4.3
AccelerationofanypointinaplanarmotionBAB(1)thetangentialacceleration
(2)thenormalacceleration2.
:hastwocomponents:
4.3
AccelerationofanypointinaplanarmotionTheabsoluteaccelerationofpointB:Theorem:
Theaccelerationofanarbitrarypointisequaltothevectorsumofaccelerationofthebasicpoint,thetangentialandnormalaccelerationsoftheplanegraphrotatingaboutthebasicpoint.
4.3
Accelerationofanypointinaplanarmotionω1ⅠⅡO1OABCAnexternaltoothingplanetgearmechanismshowninthefigure.ThelinkingbarO1O=l,rotatesaboutaxisO1withauniformangularvelocityω1.ThebiggergearIIisfixed,theplanetgearIofradiusrrollsalongthegearIIwithoutsliding.AandBaretwopointsontheedgegearI,showninthefigure.Findtheaccelerationsof
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人電車租車合同范本
- 公司民間借款合同范本
- 辦公裝修協(xié)議合同范例
- 公路養(yǎng)護補充協(xié)議合同范本
- 二手車銷售中心合同范本
- 健身俱樂部就業(yè)合同范本
- 勞務(wù)薪酬合同范例
- 2025年度家庭寵物養(yǎng)護保姆服務(wù)合同
- 公司如資金合同范本
- 兼職勞務(wù)合同范本乙方
- 病例展示(皮膚科)
- GB/T 39750-2021光伏發(fā)電系統(tǒng)直流電弧保護技術(shù)要求
- 教科版五年級科學下冊【全冊全套】課件
- (更新版)HCIA安全H12-711筆試考試題庫導出版-下(判斷、填空、簡答題)
- 糖尿病運動指導課件
- 完整版金屬學與熱處理課件
- T∕CSTM 00640-2022 烤爐用耐高溫粉末涂料
- 304不銹鋼管材質(zhì)證明書
- 民用機場不停航施工安全管理措施
- 港口集裝箱物流系統(tǒng)建模與仿真技術(shù)研究-教學平臺課件
- 新教科版2022年五年級科學下冊第2單元《船的研究》全部PPT課件(共7節(jié))
評論
0/150
提交評論