2022-2023學(xué)年江西省吉安安福縣聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2022-2023學(xué)年江西省吉安安??h聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2022-2023學(xué)年江西省吉安安??h聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2022-2023學(xué)年江西省吉安安??h聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2022-2023學(xué)年江西省吉安安??h聯(lián)考數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限2.下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.3.拋物線y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣44.方程x2+5x=0的適當(dāng)解法是()A.直接開平方法 B.配方法C.因式分解法 D.公式法5.在Rt△ABC中,AB=6,BC=8,則這個三角形的內(nèi)切圓的半徑是()A.5 B.2 C.5或2 D.2或-16.如圖,在下列四個幾何體中,從正面、左面、上面看不完全相同的是A. B. C. D.7.如圖,在△ABC中,中線AD、BE相交于點F,EG∥BC,交AD于點G,則的值是()A. B. C. D.8.已知反比例函數(shù)圖象如圖所示,下列說法正確的是()A.B.隨的增大而減小C.若矩形面積為2,則D.若圖象上兩個點的坐標(biāo)分別是,,則9.如圖,中,,,,則的長為()A. B. C.5 D.10.函數(shù)與拋物線的圖象可能是().A. B. C. D.二、填空題(每小題3分,共24分)11.“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”這段話摘自《九章算術(shù)》,意思是說:如圖,矩形ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E、南門點F分別是AB,AD的中點,EG⊥AB,F(xiàn)E⊥AD,EG=15里,HG經(jīng)過A點,則FH=__里.12.已知,是拋物線上兩點,該拋物線的解析式是__________.13.已知反比例函數(shù)的圖像上有兩點M,N,且,,那么與之間的大小關(guān)系是_____________.14.已知二次函數(shù)的部分圖象如圖所示,則一元二次方程的解為:_____.15.在一個不透明的布袋中裝有黃、白兩種顏色的球共40個,除顏色外其他都相同,小王通過多次摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在0.35左右,則布袋中黃球可能有_________個16.如圖,已知AB⊥BD,ED⊥BD,C是線段BD的中點,且AC⊥CE,ED=1,BD=4,那么AB=.17.如圖,將函數(shù)的圖象沿軸向下平移3個單位后交軸于點,若點是平移后函數(shù)圖象上一點,且的面積是3,已知點,則點的坐標(biāo)__________.18.如圖,矩形ABOC的頂點B、C分別在x軸、y軸上,頂點A在第一象限,點B的坐標(biāo)為(,0),將線段OC繞點O順時針旋轉(zhuǎn)60°至線段OD,若反比例函數(shù)(k≠0)的圖象進過A、D兩點,則k值為_____.三、解答題(共66分)19.(10分)超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速,如圖,觀測點設(shè)在到縣城城南大道的距離為米的點處.這時,一輛出租車由西向東勻速行駛,測得此車從處行駛到處所用的時間為秒,且,.求、之間的路程;請判斷此出租車是否超過了城南大道每小時千米的限制速度?20.(6分)解一元二次方程:(1)(2)21.(6分)A,B,C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由接球者將球隨機地傳給其余兩人中的某人。請畫樹狀圖,求兩次傳球后,球在A手中的概率.22.(8分)如圖,是半徑為的上的定點,動點從出發(fā),以的速度沿圓周逆時針運動,當(dāng)點回到地立即停止運動.(1)如果,求點運動的時間;(2)如果點是延長線上的一點,,那么當(dāng)點運動的時間為時,判斷直線與的位置關(guān)系,并說明理由.23.(8分)定義:如果一個四邊形的一組對角互余,那么我們稱這個四邊形為“對角互余四邊形”.(1)如圖①,在對角互余四邊形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,則四邊形ABCD的面積為;(2)如圖②,在對角互余四邊形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四邊形ABCD的面積;(3)如圖③,在△ABC中,BC=2AB,∠ABC=60°,以AC為邊在△ABC異側(cè)作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面積.24.(8分)已知二次函數(shù)的圖象和軸交于點、,與軸交于點,點是直線上方的拋物線上的動點.(1)求直線的解析式.(2)當(dāng)是拋物線頂點時,求面積.(3)在點運動過程中,求面積的最大值.25.(10分)如圖,四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,且點E在線段AD上,若AF=4,∠F=60°.(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;(2)求DE的長度和∠EBD的度數(shù).26.(10分)如圖,三角形是以為底邊的等腰三角形,點、分別是一次函數(shù)的圖象與軸、軸的交點,點在二次函數(shù)的圖象上,且該二次函數(shù)圖象上存在一點使四邊形能構(gòu)成平行四邊形.(1)試求、的值,并寫出該二次函數(shù)表達式;(2)動點沿線段從到,同時動點沿線段從到都以每秒1個單位的速度運動,問:①當(dāng)運動過程中能否存在?如果不存在請說明理由;如果存在請說明點的位置?②當(dāng)運動到何處時,四邊形的面積最???此時四邊形的面積是多少?

參考答案一、選擇題(每小題3分,共30分)1、A【解析】由拋物線的頂點坐標(biāo)在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關(guān)系,即可得出一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.故選A.【點睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關(guān)鍵.2、B【解析】根據(jù)中心對稱圖形的定義:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,直接判斷即可.【詳解】解:.不是中心對稱圖形;.是中心對稱圖形;.不是中心對稱圖形;.不是中心對稱圖形.故選:.【點睛】本題考查的知識點是中心對稱圖形的判定,這里需要注意與軸對稱圖形的區(qū)別,軸對稱形是:一定要沿某直線折疊后直線兩旁的部分互相重合;中心對稱圖形是:圖形繞某一點旋轉(zhuǎn)180°后與原來的圖形重合.3、D【解析】把y=x2+2x﹣3配方變成頂點式,求出頂點坐標(biāo)即可得拋物線的最小值.【詳解】∵y=x2+2x﹣3=(x+1)2﹣1,∴頂點坐標(biāo)為(﹣1,﹣1),∵a=1>0,∴開口向上,有最低點,有最小值為﹣1.故選:D.【點睛】本題考查二次函數(shù)最值的求法:求二次函數(shù)的最大(?。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,熟練掌握并靈活運用適當(dāng)方法是解題關(guān)鍵.4、C【分析】因為方程中可以提取公因式x,所以該方程適合用因式分解法.因式分解為x(x+5)=0,解得x=0或x=-5.用因式分解法解該方程會比較簡單快速.【詳解】解:∵x2+5x=0,∴x(x+5)=0,則x=0或x+5=0,解得:x=0或x=﹣5,故選:C.【點睛】本題的考點是解一元二次方程.方法是熟記一元二次方程的幾種解法,也可用選項的四種方法分別解題,選擇最便捷的方法.5、D【解析】分AC為斜邊和BC為斜邊兩種情況討論.根據(jù)切線定理得過切點的半徑垂直于三角形各邊,利用面積法列式求半徑長.【詳解】第一情況:當(dāng)AC為斜邊時,如圖,設(shè)⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情況:當(dāng)BC為斜邊時,如圖,設(shè)⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故選:D.【點睛】本題考查了三角形內(nèi)切圓半徑的求法及勾股定理,依據(jù)圓的切線性質(zhì)是解答此題的關(guān)鍵.等面積法是求高度等線段長的常用手段.6、B【解析】根據(jù)常見幾何體的三視圖解答即可得.【詳解】球的三視圖均為圓,故不符合題意;正方體的三視圖均為正方形,故不符合題意;圓柱體的主視圖與左視圖為長方形,俯視圖為圓,故符合題意;圓錐的主視圖與左視圖為等腰三角形,俯視圖為圓,故符合題意,故選B.【點睛】本題考查了簡單幾何體的三視圖,解題的關(guān)鍵是熟練掌握三視圖的定義和常見幾何體的三視圖.7、C【分析】先證明AG=GD,得到GE為△ADC的中位線,由三角形的中位線可得GEDCBD;由EG∥BC,可證△GEF∽△BDF,由相似三角形的性質(zhì),可得;設(shè)GF=x,用含x的式子分別表示出AG和AF,則可求得答案.【詳解】∵E為AC中點,EG∥BC,∴AG=GD,∴GE為△ADC的中位線,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.設(shè)GF=x,則FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故選:C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),熟練掌握相關(guān)定理及性質(zhì),是解答本題的關(guān)鍵.8、D【分析】根據(jù)反比例函數(shù)的圖象的位置確定其比例系數(shù)的符號,利用反比例函數(shù)的性質(zhì)進行判斷即可.【詳解】解:A.反比例函數(shù)的圖象位于第二象限,∴k﹤0故A錯誤;

B.在第二象限內(nèi)隨的增大而增大,故B錯誤;

C.矩形面積為2,∵k﹤0,∴k=-2,故C錯誤;

D.∵圖象上兩個點的坐標(biāo)分別是,,在第二象限內(nèi)隨的增大而增大,∴,故D正確,

故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),牢記反比例函數(shù)的比例系數(shù)的符號與其圖象的關(guān)系是解決本題的關(guān)鍵.9、C【解析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.【點睛】本題考查解直角三角形.10、C【分析】一次函數(shù)和二次函數(shù)與y軸交點坐標(biāo)都是(0,1),然后再對a分a>0和a<0討論即可.【詳解】解:由題意知:與拋物線與y軸的交點坐標(biāo)均是(0,1),故排除選項A;當(dāng)a>0時,一次函數(shù)經(jīng)過第一、二、三象限,二次函數(shù)開口向上,故其圖像有可能為選項C所示,但不可能為選項B所示;當(dāng)a<0時,一次函數(shù)經(jīng)過第一、二、四象限,二次函數(shù)開口向下,不可能為為選項D所示;故選:C.【點睛】本題考查了一次函數(shù)與二次函數(shù)的圖像關(guān)系,熟練掌握函數(shù)的圖像與系數(shù)之間的關(guān)系是解決本類題的關(guān)鍵.二、填空題(每小題3分,共24分)11、1.1【解析】∵EG⊥AB,F(xiàn)H⊥AD,HG經(jīng)過A點,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得FH=1.1里.故答案為1.1.12、【分析】將A(0,3),B(2,3)代入拋物線y=-x2+bx+c的解析式,可得b,c,可得解析式.【詳解】∵A(0,3),B(2,3)是拋物線y=-x2+bx+c上兩點,∴代入得,解得:b=2,c=3,∴拋物線的解析式為:y=-x2+2x+3.故答案為:y=-x2+2x+3.【點睛】本題主要考查了待定系數(shù)法求解析式,利用代入法解得b,c是解答此題的關(guān)鍵.13、【分析】根據(jù)反比例函數(shù)特征即可解題?!驹斀狻俊摺唷?,∴,∴故答案為【點睛】本題考查反比例函數(shù)上點的坐標(biāo)特征,注意反比例函數(shù)是分別在各自象限內(nèi)存在單調(diào)性。14、【解析】依題意得二次函數(shù)y=的對稱軸為x=-1,與x軸的一個交點為(-3,0),∴拋物線與x軸的另一個交點橫坐標(biāo)為(-1)×2-(-3)=1,∴交點坐標(biāo)為(1,0)∴當(dāng)x=1或x=-3時,函數(shù)值y=0,即,∴關(guān)于x的一元二次方程的解為x1=?3或x2=1.故答案為:.點睛:本題考查的是關(guān)于二次函數(shù)與一元二次方程,在解題過程中,充分利用二次凹函數(shù)圖象,根據(jù)圖象提取有用條件來解答,這樣可以降低題的難度,從而提高解題效率.15、14【分析】先由頻率估計出摸到黃球的概率,然后利用概率公式求解即可.【詳解】因摸到黃球的頻率穩(wěn)定在0.35左右則摸到黃球的概率為0.35設(shè)布袋中黃球的個數(shù)為x個由概率公式得解得故答案為:14.【點睛】本題考查了頻率估計概率、概率公式,根據(jù)頻率估計出事件概率是解題關(guān)鍵.16、4【解析】∵AB⊥BD,ED⊥BD∴∠B=∠D=90°,∠A+∠ACB=90°∵AC⊥CE,即∠ECD+∠ACB=90°∴∠A=∠ECD∴△ABC∽△CDE∴∴AB=417、或【分析】根據(jù)函數(shù)圖象的變化規(guī)律可得變換后得到的圖象對應(yīng)的函數(shù)解析式為,求出點的坐標(biāo)為,那么,設(shè)的邊上高為,根據(jù)的面積是3可求得,從而求得的坐標(biāo).【詳解】解:將函數(shù)的圖象沿軸向下平移3個單位后得到,令,得,解得,點的坐標(biāo)為,點,.設(shè)的邊上高為,的面積是3,,,將代入,解得;將代入,解得.點的坐標(biāo)是,或.故答案為:,或.【點睛】本題考查了坐標(biāo)與圖形變化-平移,三角形的面積,函數(shù)圖像上點的特征,由平移后函數(shù)解析式求出點的坐標(biāo)是解題的關(guān)鍵.18、4【分析】過點D作DH⊥x軸于H,四邊形ABOC是矩形,由性質(zhì)有AB=CO,∠COB=90°,將OC繞點O順時針旋轉(zhuǎn)60°,OC=OD,∠COD=60°,可得∠DOH=30°,設(shè)DH=x,點D(x,x),點A(,2x),反比例函數(shù)(k≠0)的圖象經(jīng)過A、D兩點,構(gòu)造方程求出即可.【詳解】解:如圖,過點D作DH⊥x軸于H,∵四邊形ABOC是矩形,∴AB=CO,∠COB=90°,∵將線段OC繞點O順時針旋轉(zhuǎn)60°至線段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH=DH,設(shè)DH=x,∴點D(x,x),點A(,2x),∵反比例函數(shù)(k≠0)的圖象經(jīng)過A、D兩點,∴x×x=×2x,∴x=2,∴點D(2,2),∴k=2×2=4,故答案為:4.【點睛】本題考查反比例函數(shù)解析式問題,關(guān)鍵利用矩形的性質(zhì)與旋轉(zhuǎn)找到AB=CO=OD,∠DOH=30°,DH=x,會用x表示點D(x,x),點A(,2x),利用A、D在反比例函數(shù)(k≠0)的圖象上,構(gòu)造方程使問題得以解決.三、解答題(共66分)19、(米);此車超過了每小時千米的限制速度.【分析】(1)利用三角函數(shù)在兩個直角三角形中分別計算出BO、AO的長,即可算出AB的長;(2)利用路程÷時間=速度,計算出出租車的速度,再把60千米/時化為米/秒,再進行比較即可.【詳解】由題意知:米,,,在直角三角形中,∵,∴米,在直角三角形中,∵,∴米,∴(米);∵從處行駛到處所用的時間為秒,∴速度為米/秒,∵千米/時米/秒,而,∴此車超過了每小時千米的限制速度.【點睛】此題是解直角三角形的應(yīng)用,主要考查了銳角三角函數(shù),從復(fù)雜的實際問題中整理出直角三角形并求解是解決此類題目的關(guān)鍵.20、(1);(2)【分析】(1)利用直接開方法求解;(2),故用因式分解法解方程;【詳解】(1)(2)【點睛】本題考查一元二次方程的解法,根據(jù)每題情況不一樣選擇合適的方法是解題的關(guān)鍵。21、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次傳球后,球恰在A手中的情況,再利用概率公式即可求得答案【詳解】解:列樹狀圖一共有4種結(jié)果,兩次傳球后,球在A手中的有2種情況,∴P(兩次傳球后,球在A手中的).【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.22、(1)或(2)直線與相切,理由見解析【分析】(1)當(dāng)∠POA=90°時,點P運動的路程為⊙O周長的或,所以分兩種情況進行分析;

(2)直線BP與⊙O的位置關(guān)系是相切,根據(jù)已知可證得OP⊥BP,即直線BP與⊙O相切.【詳解】解:(1)當(dāng)∠POA=90°時,根據(jù)弧長公式可知點P運動的路程為⊙O周長的或,設(shè)點P運動的時間為ts;

當(dāng)點P運動的路程為⊙O周長的時,2π?t=?2π?12,

解得t=3;

當(dāng)點P運動的路程為⊙O周長的時,2π?t=?2π?12,

解得t=9;

∴當(dāng)∠POA=90°時,點P運動的時間為3s或9s.

(2)如圖,當(dāng)點P運動的時間為2s時,直線BP與⊙O相切

理由如下:

當(dāng)點P運動的時間為2s時,點P運動的路程為4πcm,

連接OP,PA;

∵半徑AO=12cm,

∴⊙O的周長為24πcm,

∴的長為⊙O周長的,

∴∠POA=60°;

∵OP=OA,

∴△OAP是等邊三角形,

∴OP=OA=AP,∠OAP=60°;

∵AB=OA,

∴AP=AB,

∵∠OAP=∠APB+∠B,

∴∠APB=∠B=30°,

∴∠OPB=∠OPA+∠APB=90°,

∴OP⊥BP,

∴直線BP與⊙O相切.【點睛】本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.23、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三邊的特殊關(guān)系以及勾股定理,就可以解決問題;(2)將△BAD繞點B順時針旋轉(zhuǎn)到△BCE,則△BCE≌△BAD,連接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.這樣可以求∠DCE=90°,則可以得到DE的長,進而把四邊形ABCD的面積轉(zhuǎn)化為△BCD和△BCE的面積之和,△BDE和△CDE的面積容易算出來,則四邊形ABCD面積可求;(3)取BC的中點E,連接AE,作CF⊥AD于F,DG⊥BC于G,則BE=CE=BC,證出△ABE是等邊三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,證出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,設(shè)AB=x,則AC=x,由直角三角形的性質(zhì)得出CF=3,從而DF=3,設(shè)CG=a,AF=y,證明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,進而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面積即可得出答案.【詳解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵對角互余四邊形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=?AC?BC=××1=,S△ACD═?AC?AD=××3=,∴S四邊形ABCD=S△ABC+S△ACD=2,故答案為:2;(2)將△BAD繞點B順時針旋轉(zhuǎn)到△BCE,如圖②所示:則△BCE≌△BAD,連接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四邊形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根據(jù)勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=?BH?DE=×12×10=60,S△CED=?CD?CE=×6×8=24,∵△BCE≌△BAD,∴S四邊形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中點E,連接AE,作CF⊥AD于F,DG⊥BC于G,如圖③所示:則BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等邊三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC=AB,設(shè)AB=x,則AC=x,∵∠ADC=30°,∴CF=CD=3,DF=CF=3,設(shè)CG=a,AF=y(tǒng),在四邊形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴=,即=,∴y=,在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=(x)2﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=,∴y==×=,∴[]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣6,或x2=34+6(不合題意舍去),∴x2=34﹣6,∴y2=3(34﹣6)﹣9=93﹣18=93﹣2=()2,∴y=﹣3,∴AF=﹣3,∴AD=AF+DF=,∴△ACD的面積=AD×CF=××3=.【點睛】此題是四邊形綜合題,主要考查了新定義的理解和應(yīng)用,相似三角形的判定和性質(zhì),勾股定理,等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì),含30°角的直角三角形的性質(zhì)等知識;本題綜合性強,有一定難度.24、(1);(2)3;(3)面積的最大值為.【分析】(1)由題意分別將x=0、y=0代入二次函數(shù)解析式中求出點C、A的坐標(biāo),再根據(jù)點A、C的坐標(biāo)利用待定系數(shù)法即可求出直線AC的解析式;(2)由題意先根據(jù)二次函數(shù)解析式求出頂點,進而利用割補法求面積;(3)根據(jù)題意過點作軸交于點并設(shè)點的坐標(biāo)為(),則點的坐標(biāo)為進而進行分析.【詳解】解:(1)分別將x=0、y=0代入二次函數(shù)解析式中求出點C、A的坐標(biāo)為;;將;代入,得到直線的解析式為.(2)由,將其化為頂點式為,可知頂點P為,如圖P為頂點時連接PC并延長交x軸于點G,則有,將P點和C點代入求出PC的解析式為,解得G為,所有=3;(3)過點作軸交于點.設(shè)點的坐標(biāo)為(),則點的坐標(biāo)為∴,當(dāng)時,取最大值,最大值為.∵,∴面積的最大值為.【點睛】本題考查待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)圖象上點的坐標(biāo)特征、等腰三角形的性質(zhì)、二次函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論