




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中數(shù)學(xué)競(jìng)賽講義(一)──集合與簡(jiǎn)易邏輯一、基礎(chǔ)知識(shí)定義1
一般地,一組確定的、互異的、無(wú)序的對(duì)象的全體組成集合,簡(jiǎn)稱集,用大寫(xiě)字母來(lái)表示;集合中的各個(gè)對(duì)象稱為元素,用小寫(xiě)字母來(lái)表示,元素在集合A中,稱屬于A,記為,否則稱不屬于A,記作。例如,一般用N,Z,Q,B,Q+分別表示自然數(shù)集、整數(shù)集、有理數(shù)集、實(shí)數(shù)集、正有理數(shù)集,不含任何元素的集合稱為空集,用來(lái)表示。集合分有限集和無(wú)限集兩種。集合的表示措施有列舉法:將集合中的元素一一列舉出來(lái)寫(xiě)在大括號(hào)內(nèi)并用逗號(hào)隔開(kāi)表示集合的措施,如{1,2,3};描述法:將集合中的元素的屬性寫(xiě)在大括號(hào)內(nèi)表示集合的措施。例如{有理數(shù)},分別表示有理數(shù)集和正實(shí)數(shù)集。定義2
子集:對(duì)于兩個(gè)集合A與B,假如集合A中的任何一個(gè)元素都是集合B中的元素,則A叫做B的子集,記為,例如。要求空集是任何集合的子集,假如A是B的子集,B也是A的子集,則稱A與B相等。假如A是B的子集,并且B中存在元素不屬于A,則A叫B的真子集。定義3
交集,定義4
并集,定義5
補(bǔ)集,若稱為A在I中的補(bǔ)集。定義6
差集,。定義7
集合記作開(kāi)區(qū)間,集合記作閉區(qū)間,R記作定理1
集合的性質(zhì):對(duì)任意集合A,B,C,有:(1)(2);(3)(4)【證明】這里僅證(1)、(3),其他由讀者自己完成。(1)若,則,且或,因此或,即;反之,,則或,即且或,即且,即(3)若,則或,因此或,因此,又,因此,即,反之也有定理2
加法原理:做一件事有類措施,第一類措施中有種不一樣的措施,第二類措施中有種不一樣的措施,…,第類措施中有種不一樣的措施,那么完成這件事一共有種不一樣的措施。定理3
乘法原理:做一件事分個(gè)步驟,第一步有種不一樣的措施,第二步有種不一樣的措施,…,第步有種不一樣的措施,那么完成這件事一共有種不一樣的措施。二、措施與例題1.利用集合中元素的屬性,檢查元素是否屬于集合。例1
設(shè),求證:(1);(2);(3)若,則[證明](1)因?yàn)?,且,因此?)假設(shè),則存在,使,因?yàn)楹陀邢嗤钠媾夹裕虼耸瞧鏀?shù)或4的倍數(shù),不也許等于,假設(shè)不成立,因此(3)設(shè),則(因?yàn)椋?.利用子集的定義證明集合相等,先證,再證,則A=B。例2
設(shè)A,B是兩個(gè)集合,又設(shè)集合M滿足,求集合M(用A,B表示)?!窘狻肯茸C,若,因?yàn)椋虼?,因此;再證,若,則1)若,則;2)若,則。因此綜上,3.分類討論思想的應(yīng)用。例3
,若,求【解】依題設(shè),,再由解得或,因?yàn)?,因此,因此,因此?,因此或3。因?yàn)?,因此,若,則,即,若,則或,解得綜上所述,或;或。4.計(jì)數(shù)原理的應(yīng)用。例4
集合A,B,C是I={1,2,3,4,5,6,7,8,9,0}的子集,(1)若,求有序集合對(duì)(A,B)的個(gè)數(shù);(2)求I的非空真子集的個(gè)數(shù)?!窘狻浚?)集合I可劃分為三個(gè)不相交的子集;A\B,B\A,中的每個(gè)元素恰屬于其中一個(gè)子集,10個(gè)元素共有310種也許,每一個(gè)也許確定一個(gè)滿足條件的集合對(duì),因此集合對(duì)有310個(gè)。(2)I的子集分三類:空集,非空真子集,集合I自身,確定一個(gè)子集分十步,第一步,1或者屬于該子集或者不屬于,有兩種;第二步,2也有兩種,…,第10步,0也有兩種,由乘法原理,子集共有個(gè),非空真子集有1022個(gè)。5.配對(duì)措施。例5給定集合的個(gè)子集:,滿足任何兩個(gè)子集的交集非空,并且再添加I的任何一個(gè)其他子集后將不再具備該性質(zhì),求的值?!窘狻繉的子集作如下配對(duì):每個(gè)子集和它的補(bǔ)集為一對(duì),共得對(duì),每一對(duì)不能同在這個(gè)子集中,因此,;其次,每一對(duì)中必有一個(gè)在這個(gè)子集中出現(xiàn),否則,若有一對(duì)子集未出現(xiàn),設(shè)為C1A與A,并設(shè),則,從而能夠在個(gè)子集中再添加,與已知矛盾,因此。綜上,。6.競(jìng)賽常用措施與例問(wèn)題。定理4
容斥原理;用表示集合A的元素個(gè)數(shù),則,需要xy此結(jié)論能夠推廣到個(gè)集合的情況,即定義8
集合的劃分:若,且,則這些子集的全集叫I的一個(gè)-劃分。定理5
最小數(shù)原理:自然數(shù)集的任何非空子集必有最小數(shù)。定理6
抽屜原理:將個(gè)元素放入個(gè)抽屜,必有一個(gè)抽屜放有不少于個(gè)元素,也必有一個(gè)抽屜放有不多于個(gè)元素;將無(wú)窮多個(gè)元素放入個(gè)抽屜必有一個(gè)抽屜放有無(wú)窮多個(gè)元素。例6
求1,2,3,…,100中不能被2,3,5整除的數(shù)的個(gè)數(shù)。【解】記,,由容斥原理,,因此不能被2,3,5整除的數(shù)有個(gè)。例7
S是集合{1,2,…,}的子集,S中的任意兩個(gè)數(shù)的差不等于4或7,問(wèn)S中最多含有多少個(gè)元素?【解】將任意連續(xù)的11個(gè)整數(shù)排成一圈如右圖所示。由題目條件可知每相鄰兩個(gè)數(shù)至多有一個(gè)屬于S,將這11個(gè)數(shù)按連續(xù)兩個(gè)為一組,提成6組,其中一組只有一個(gè)數(shù),若S含有這11個(gè)數(shù)中最少6個(gè),則必有兩個(gè)數(shù)在同一組,與已知矛盾,因此S至多含有其中5個(gè)數(shù)。又因?yàn)?182×11+2,因此S一共至多含有182×5+2=912個(gè)元素,另首先,當(dāng)初,恰有,且S滿足題目條件,因此最少含有912個(gè)元素。例8
求所有自然數(shù),使得存在實(shí)數(shù)滿足:【解】
當(dāng)初,;當(dāng)初,;當(dāng)初,。下證當(dāng)初,不存在滿足條件。令,則因此必存在某兩個(gè)下標(biāo),使得,因此或,即,因此或,。(?。┤?,考慮,有或,即,設(shè),則,導(dǎo)致矛盾,故只有考慮,有或,即,設(shè),則,推出矛盾,設(shè),則,又推出矛盾,因此故當(dāng)初,不存在滿足條件的實(shí)數(shù)。(ⅱ)若,考慮,有或,即,這時(shí),推出矛盾,故??紤],有或,即=3,于是,矛盾。因此,因此,這又矛盾,因此只有,因此。故當(dāng)初,不存在滿足條件的實(shí)數(shù)。例9
設(shè)A={1,2,3,4,5,6},B={7,8,9,……,n},在A中取三個(gè)數(shù),B中取兩個(gè)數(shù)組成五個(gè)元素的集合,求的最小值?!窘狻吭O(shè)B中每個(gè)數(shù)在所有中最多重復(fù)出現(xiàn)次,則必有。若否則,數(shù)出現(xiàn)次(),則在出現(xiàn)的所有中,最少有一個(gè)A中的數(shù)出現(xiàn)3次,不妨設(shè)它是1,就有集合{1,},其中,為滿足題意的集合。必各不相同,但只能是2,3,4,5,6這5個(gè)數(shù),這不也許,因此20個(gè)中,B中的數(shù)有40個(gè),因此最少是10個(gè)不一樣的,因此。當(dāng)初,如下20個(gè)集合滿足要求:{1,2,3,7,8},
{1,2,4,12,14},
{1,2,5,15,16},
{1,2,6,9,10},{1,3,4,10,11},{1,3,5,13,14},
{1,3,6,12,15},
{1,4,5,7,9},{1,4,6,13,16},{1,5,6,8,11},
{2,3,4,13,15},
{2,3,5,9,11},{2,3,6,14,16},{2,4,5,8,10},
{2,4,6,7,11},
{2,5,6,12,13},{3,4,5,12,16},{3,4,6,8,9},
{3,5,6,7,10},
{4,5,6,14,15}。例10集合{1,2,…,3n}能夠劃提成個(gè)互不相交的三元集合,其中,求滿足條件的最小正整數(shù)【解】設(shè)其中第個(gè)三元集為則1+2+…+因此。當(dāng)為偶數(shù)時(shí),有,因此,當(dāng)為奇數(shù)時(shí),有,因此,當(dāng)初,集合{1,11,4},{2,13,5},{3,15,6},{9,12,7},{10,14,8}滿足條件,因此的最小值為5。三、基礎(chǔ)訓(xùn)練題1.給定三元集合,則實(shí)數(shù)的取值范圍是___________。2.若集合中只有一個(gè)元素,則=___________。3.集合的非空真子集有___________個(gè)。4.已知集合,若,則由滿足條件的實(shí)數(shù)組成的集合P=___________。5.已知,且,則常數(shù)的取值范圍是___________。6.若非空集合S滿足,且若,則,那么符合要求的集合S有___________個(gè)。7.集合之間的關(guān)系是___________。8.若集合,其中,且,若,則A中元素之和是___________。9.集合,且,則滿足條件的值組成的集合為_(kāi)__________。10.集合,則___________。11.已知S是由實(shí)數(shù)組成的集合,且滿足1))若,則。假如,S中最少含有多少個(gè)元素?闡明理由。12.已知,又C為單元素集合,求實(shí)數(shù)的取值范圍。四、高考水平訓(xùn)練題1.已知集合,且A=B,則___________,___________。
2.,則___________。3.已知集合,當(dāng)初,實(shí)數(shù)的取值范圍是___________。4.若實(shí)數(shù)為常數(shù),且___________。5.集合,若,則___________。6.集合,則中的最小元素是___________。7.集合,且A=B,則___________。8.已知集合,且,則的取值范圍是___________。9.設(shè)集合,問(wèn):是否存在,使得,并證明你的結(jié)論。10.集合A和B各含有12個(gè)元素,含有4個(gè)元素,試求同時(shí)滿足下列條件的集合C的個(gè)數(shù):1)且C中含有3個(gè)元素;2)。11.判斷如下命題是否正確:設(shè)A,B是平面上兩個(gè)點(diǎn)集,,若對(duì)任何,都有,則必有,證明你的結(jié)論。五、聯(lián)賽一試水平訓(xùn)練題1.已知集合,則實(shí)數(shù)的取值范圍是___________。2.集合的子集B滿足:對(duì)任意的,則集合B中元素個(gè)數(shù)的最大值是___________。3.已知集合,其中,且,若P=Q,則實(shí)數(shù)___________。4.已知集合,若是平面上正八邊形的頂點(diǎn)所組成的集合,則___________。5.集合,集合,則集合M與N的關(guān)系是___________。6.設(shè)集合,集合A滿足:,且當(dāng)初,,則A中元素最多有___________個(gè)。7.非空集合,≤則使成立的所有的集合是___________。8.已知集合A,B,aC(無(wú)須相異)的并集,則滿足條件的有序三元組(A,B,C)個(gè)數(shù)是___________。9.已知集合,問(wèn):當(dāng)取何值時(shí),為恰有2個(gè)元素的集合?闡明理由,若改為3個(gè)元素集合,結(jié)論怎樣?10.求集合B和C,使得,并且C的元素乘積等于B的元素和。11.S是Q的子集且滿足:若,則恰有一個(gè)成立,并且若,則,試確定集合S。12.集合S={1,2,3,4,5,6,7,8,9,0}的若干個(gè)五元子集滿足:S中的任何兩個(gè)元素至多出目前兩個(gè)不一樣的五元子集中,問(wèn):至多有多少個(gè)五元子集?六、聯(lián)賽二試水平訓(xùn)練題1.是三個(gè)非空整數(shù)集,已知對(duì)于1,2,3的任意一個(gè)排列,假如,,則。求證:中必有兩個(gè)相等。2.求證:集合{1,2,…,1989}能夠劃分為117個(gè)互不相交的子集,使得(1)每個(gè)恰有17個(gè)元素;(2)每個(gè)中各元素之和相同。3.某人寫(xiě)了封信,同時(shí)寫(xiě)了個(gè)信封,然后將信任意裝入信封,問(wèn):每封信都裝錯(cuò)的情況有多少種?4.設(shè)是20個(gè)兩兩不一樣的整數(shù),且整合中有201個(gè)不一樣的元素,求集合中不一樣元素個(gè)數(shù)的最小也許值。5.設(shè)S是由個(gè)人組成的集合。求證
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 大豆異黃酮更年期調(diào)節(jié)片行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 全棉洗水褲企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略研究報(bào)告
- 鈦礦企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級(jí)戰(zhàn)略研究報(bào)告
- 保濕補(bǔ)水面膜貼密集修護(hù)行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 三角絲巾企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級(jí)戰(zhàn)略研究報(bào)告
- 道外租房合同范本
- 礦產(chǎn)股份合同范本
- 現(xiàn)代交通運(yùn)載工具的智能化管理研究
- 2025年吡唑啉酮合作協(xié)議書(shū)
- 承建合同范本
- 服裝廠安全生產(chǎn)評(píng)估報(bào)告
- 通力電梯KCE電氣系統(tǒng)學(xué)習(xí)指南
- 教學(xué)課件-《旅行社業(yè)務(wù)》-(中職)
- 第二章 第一節(jié) CT設(shè)備基本運(yùn)行條件
- 某道路拓寬工程施工組織設(shè)計(jì)
- 第一章染整工廠設(shè)計(jì)
- 上虞市化工、印染企業(yè)名單-企業(yè)負(fù)責(zé)人信息及聯(lián)系方式
- DL-T 736-2021 農(nóng)村電網(wǎng)剩余電流動(dòng)作保護(hù)器安裝運(yùn)行規(guī)程
- YS/T 431-2009鋁及鋁合金彩色涂層板、帶材
- SB/T 10439-2007醬腌菜
- 與食品經(jīng)營(yíng)相適應(yīng)的主要設(shè)備設(shè)施布局和操作流程文件
評(píng)論
0/150
提交評(píng)論