2025屆廣東省廣州市越秀區(qū)知用中學(xué)九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁
2025屆廣東省廣州市越秀區(qū)知用中學(xué)九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁
2025屆廣東省廣州市越秀區(qū)知用中學(xué)九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁
2025屆廣東省廣州市越秀區(qū)知用中學(xué)九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁
2025屆廣東省廣州市越秀區(qū)知用中學(xué)九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆廣東省廣州市越秀區(qū)知用中學(xué)九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖是由5個完全相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.2.拋物線y=x2﹣2x+2的頂點坐標(biāo)為()A.(1,1) B.(﹣1,1) C.(1,3) D.(﹣1,3)3.計算,正確的結(jié)果是()A.2 B.3a C. D.4.如圖物體由兩個圓錐組成,其主視圖中,.若上面圓錐的側(cè)面積為1,則下面圓錐的側(cè)面積為()A.2 B. C. D.5.在Rt△ABC中,∠C=90°,AC=5,BC=12,則cosB的值為()A. B. C. D.6.下列計算①②③④⑤,其中任意抽取一個,運(yùn)算結(jié)果正確的概率是()A. B. C. D.7.如圖是一斜坡的橫截面,某人沿斜坡上的點出發(fā),走了13米到達(dá)處,此時他在鉛直方向升高了5米.則該斜坡的坡度為()A. B. C. D.8.若關(guān)于的一元二次方程有一個根為0,則的值()A.0 B.1或2 C.1 D.29.如圖,正方形ABCD的邊長是4,∠DAC的平分線交DC于點E,若點P、Q分別是AD和AE上的動點,則DQ+PQ的最小值()A.2B.4C.2D.410.在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象可能是()A. B. C. D.11.已知與各邊相切于點,,則的半徑()A. B. C. D.12.如圖,拋物線y=ax2+bx+c的對稱軸為x=﹣1,且過點(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正確的結(jié)論是()A.①③ B.①③④ C.①②③ D.①②③④二、填空題(每題4分,共24分)13.如圖,為的直徑,則_______________________.14.如圖,一架長為米的梯子斜靠在一豎直的墻上,這時測得,如果梯子的底端外移到,則梯子頂端下移到,這時又測得,那么的長度約為______米.(,,,)15.甲、乙兩個籃球隊隊員身高的平均數(shù)都為2.07米,方差分別是、,且,則隊員身高比較整齊的球隊是_____.16.四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為_____°.17.在平面直角坐標(biāo)系中,與位似,位似中心為原點,點與點是對應(yīng)頂點,且點A,點的坐標(biāo)分別是,,那么與的相似比為__________.18.如圖,一次函數(shù)的圖象交x軸于點B,交y軸于點A,交反比例函數(shù)的圖象于點,若,且的面積為2,則k的值為________三、解答題(共78分)19.(8分)如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG(1)判斷CG與⊙O的位置關(guān)系,并說明理由;(2)求證:2OB2=BC?BF;(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.20.(8分)我區(qū)某校組織了一次“詩詞大會”,張老師為了選拔本班學(xué)生參加,對本班全體學(xué)生詩詞的掌握情況進(jìn)行了調(diào)查,并將調(diào)查結(jié)果分為了三類:A:好,B:中,C:差.請根據(jù)圖中信息,解答下列問題:(1)全班學(xué)生共有人;(2)扇形統(tǒng)計圖中,B類占的百分比為%,C類占的百分比為%;(3)將上面的條形統(tǒng)計圖補(bǔ)充完整;(4)小明被選中參加了比賽.比賽中有一道必答題是:從下表所示的九宮格中選取七個字組成一句詩,其答案為“便引詩情到碧霄”.小明回答該問題時,對第四個字是選“情”還是選“青”,第七個字是選“霄”還是選“宵”,都難以抉擇,若分別隨機(jī)選擇,請用列表或畫樹狀圖的方法求小明回答正確的概率.情到碧霄詩青引宵便21.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交x軸于A、B兩點,OA=1,OB=3,拋物線的頂點坐標(biāo)為D(1,4).(1)求A、B兩點的坐標(biāo);(2)求拋物線的表達(dá)式;(3)過點D做直線DE//y軸,交x軸于點E,點P是拋物線上A、D兩點間的一個動點(點P不于A、D兩點重合),PA、PB與直線DE分別交于點G、F,當(dāng)點P運(yùn)動時,EF+EG的值是否變化,如不變,試求出該值;若變化,請說明理由。22.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.23.(10分)2013年3月,某煤礦發(fā)生瓦斯爆炸,該地救援隊立即趕赴現(xiàn)場進(jìn)行救援,救援隊利用生命探測儀在地面A、B兩個探測點探測到C處有生命跡象.已知A、B兩點相距4米,探測線與地面的夾角分別是30°和45°,試確定生命所在點C的深度.(精確到0.1米,參考數(shù)據(jù):)24.(10分)解方程:;二次函數(shù)圖象經(jīng)過點,當(dāng)時,函數(shù)有最大值,求二次函數(shù)的解析式.25.(12分)如圖,在矩形ABCD中,AB=3,BC=4,點E是線段AC上的一個動點且=k(0<k<1),點F在線段BC上,且DEFH為矩形;過點E作MN⊥BC,分別交AD,BC于點M,N.(1)求證:△MED∽△NFE;(2)當(dāng)EF=FC時,求k的值.(3)當(dāng)矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.26.如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,擺動臂長可繞點旋轉(zhuǎn),擺動臂可繞點旋轉(zhuǎn),,.(1)在旋轉(zhuǎn)過程中:①當(dāng)三點在同一直線上時,求的長;②當(dāng)三點在同一直角三角形的頂點時,求的長.(2)若擺動臂順時針旋轉(zhuǎn),點的位置由外的點轉(zhuǎn)到其內(nèi)的點處,連結(jié),如圖2,此時,,求的長.

參考答案一、選擇題(每題4分,共48分)1、B【分析】主視圖就是從正面看,根據(jù)橫豎正方形的個數(shù)可以得到答案.【詳解】主視圖就是從正面看,視圖有2層,一層3個正方形,二層左側(cè)一個正方形.故選B【點睛】本題考核知識點:三視圖.解題關(guān)鍵點:理解三視圖意義.2、A【解析】分析:把函數(shù)解析式整理成頂點式形式,然后寫出頂點坐標(biāo)即可.詳解:∵y=x2-2x+2=(x-1)2+1,∴頂點坐標(biāo)為(1,1).故選A.點睛:本題考查了二次函數(shù)的性質(zhì),熟練掌握利用頂點式解析式寫出頂點坐標(biāo)的方法是解題的關(guān)鍵.3、D【分析】根據(jù)同底數(shù)冪除法法則即可解答.【詳解】根據(jù)同底數(shù)冪除法法則(同底數(shù)冪相除,底數(shù)不變,指數(shù)相減)可得,a6÷a1=a6﹣1=a1.故選D.【點睛】本題考查了整式除法的基本運(yùn)算,必須熟練掌握運(yùn)算法則.4、D【分析】先證明△ABD為等腰直角三角形得到∠ABD=45°,BD=AB,再證明△CBD為等邊三角形得到BC=BD=AB,利用圓錐的側(cè)面積的計算方法得到上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于AB:CB,從而得到下面圓錐的側(cè)面積.【詳解】∵∠A=90°,AB=AD,∴△ABD為等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD為等邊三角形,∴BC=BD=AB,∵上面圓錐與下面圓錐的底面相同,∴上面圓錐的側(cè)面積與下面圓錐的側(cè)面積的比等于AB:CB,∴下面圓錐的側(cè)面積=×1=.故選D.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了等腰直角三角形和等邊三角形的性質(zhì).5、B【分析】根據(jù)勾股定理求出AB,根據(jù)余弦的定義計算即可.【詳解】由勾股定理得,,則,故選:B.【點睛】本題考查的是銳角三角函數(shù)的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關(guān)鍵.6、A【解析】根據(jù)計算結(jié)果和概率公式求解即可.【詳解】運(yùn)算結(jié)果正確的有⑤,則運(yùn)算結(jié)果正確的概率是,故選:A.【點睛】考核知識點:求概率.熟記公式是關(guān)鍵.7、A【分析】如圖,過點M做水平線,過點N做直線垂直于水平線垂足為點A,則△MAN為直角三角形,先根據(jù)勾股定理,求出水平距離,然后根據(jù)坡度定義解答即可.【詳解】解:如圖,過點M做水平線,過點N做垂直于水平線交于點A.在Rt△MNA中,,∴坡度5:12=1:2.1.故選:A【點睛】本題考查的知識點為:坡度=垂直距離:水平距離,通常寫成1:n的形式,屬于基礎(chǔ)題.8、D【分析】把x=1代入已知方程得到關(guān)于m的一元二次方程,通過解方程求得m的值;注意二次項系數(shù)不為零,即m-1≠1.【詳解】解:根據(jù)題意,將x=1代入方程,得:m2-3m+2=1,

解得:m=1或m=2,

又m-1≠1,即m≠1,

∴m=2,

故選:D.【點睛】本題考查了一元二次方程的解定義和一元二次方程的定義.注意:本題中所求得的m的值必須滿足:m-1≠1這一條件.9、C【分析】過D作AE的垂線交AE于F,交AC于D′,再過D′作AP′⊥AD,由角平分線的性質(zhì)可得出D′是D關(guān)于AE的對稱點,進(jìn)而可知D′P′即為DQ+PQ的最小值.【詳解】作D關(guān)于AE的對稱點D′,再過D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D關(guān)于AE的對稱點,AD′=AD=4,∴D′P′即為DQ+PQ的最小值,∵四邊形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值為22,故答案為C.【點睛】本題考查了正方形的性質(zhì)以及角平分線的性質(zhì)和全等三角形的判定和性質(zhì)和軸對稱-最短路線問題,根據(jù)題意作出輔助線是解答此題的10、C【解析】試題解析:A、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線y=ax2+bx來說,對稱軸x=﹣<0,應(yīng)在y軸的左側(cè),故不合題意,圖形錯誤.B、對于直線y=bx+a來說,由圖象可以判斷,a<0,b<0;而對于拋物線y=ax2+bx來說,圖象應(yīng)開口向下,故不合題意,圖形錯誤.C、對于直線y=bx+a來說,由圖象可以判斷,a<0,b>0;而對于拋物線y=ax2+bx來說,圖象開口向下,對稱軸x=﹣位于y軸的右側(cè),故符合題意,D、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線y=ax2+bx來說,圖象開口向下,a<0,故不合題意,圖形錯誤.故選C.考點:二次函數(shù)的圖象;一次函數(shù)的圖象.11、C【分析】根據(jù)內(nèi)切圓的性質(zhì),得到,AE=AD=5,BD=BF=2,CE=CF=3,作BG⊥AC于點G,然后求出BG的長度,利用面積相等即可求出內(nèi)切圓的半徑.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF,作BG⊥AC于點G,∵是的內(nèi)切圓,∴,AE=AD=5,BD=BF=2,CE=CF=3,∴AC=8,AB=7,BC=5,在Rt△BCG和Rt△ABG中,設(shè)CG=x,則AG=,由勾股定理,得:,∴,解得:,∴,∴,∵,∴;故選:C.【點睛】本題考查了三角形內(nèi)切圓的性質(zhì),利用勾股定理解直角三角形,以及利用面積法求線段的長度,解題的關(guān)鍵是掌握三角形內(nèi)切圓的性質(zhì),熟練運(yùn)用三角形面積相等進(jìn)行解題.12、C【分析】①根據(jù)拋物線的開口方向、對稱軸、與y軸的交點即可得結(jié)論;②根據(jù)拋物線與x軸的交點坐標(biāo)即可得結(jié)論;③根據(jù)對稱軸和與x軸的交點得另一個交點坐標(biāo),把另一個交點坐標(biāo)代入拋物線解析式即可得結(jié)論;④根據(jù)點(,1)和對稱軸方程即可得結(jié)論.【詳解】解:①觀察圖象可知:a<1,b<1,c>1,∴abc>1,所以①正確;②當(dāng)x=時,y=1,即a+b+c=1,∴a+2b+4c=1,∴a+4c=﹣2b,∴a﹣2b+4c=﹣4b>1,所以②正確;③因為對稱軸x=﹣1,拋物線與x軸的交點(,1),所以與x軸的另一個交點為(﹣,1),當(dāng)x=﹣時,a﹣b+c=1,∴25a﹣11b+4c=1.所以③正確;④當(dāng)x=時,a+2b+4c=1,又對稱軸:﹣=﹣1,∴b=2a,a=b,b+2b+4c=1,∴b=﹣c.∴3b+2c=﹣c+2c=﹣c<1,∴3b+2c<1.所以④錯誤.故選:C.【點睛】本題考查了利用拋物線判斷式子正負(fù),正確讀懂拋物線的信息,判斷式子正負(fù)是解題的關(guān)鍵二、填空題(每題4分,共24分)13、60°【分析】連接AC,根據(jù)圓周角定理求出∠A的度數(shù),根據(jù)直徑所對的圓周角是直角得到∠ACB=90°,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】解:連接AC,

由圓周角定理得,∠A=∠CDB=30°,

∵AB為⊙O的直徑,

∴∠ACB=90°,

∴∠CBA=90°-∠A=60°,

故答案為:60°.【點睛】本題考查的是圓周角定理的應(yīng)用,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半、直徑所對的圓周角是直角是解題的關(guān)鍵.14、【分析】直接利用銳角三角函數(shù)關(guān)系得出,的長,進(jìn)而得出答案.【詳解】由題意可得:∵,,,解得:,∵,,,解得:,則,答:的長度約為米.故答案為.【點睛】此題主要考查了解直角三角形的應(yīng)用,正確得出,的長是解題關(guān)鍵.15、乙【解析】根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】解:∵,∴隊員身高比較整齊的球隊是乙,故答案為:乙.【點睛】本題考查方差.解題關(guān)鍵在于知道方差是用來衡量一組數(shù)據(jù)波動大小的量16、1.【分析】根據(jù)圓內(nèi)接四邊形的對角互補(bǔ)的性質(zhì)進(jìn)行計算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=1°,故答案為:1.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),理解圓內(nèi)接四邊形的對角互補(bǔ)的性質(zhì)是解答本題的關(guān)鍵.17、2【分析】分別求出OA和OA1的長度即可得出答案.【詳解】根據(jù)題意可得,,,所以相似比=,故答案為2.【點睛】本題考查的是位似,屬于基礎(chǔ)圖形,位似圖形上任意一對對應(yīng)點到位似中心的距離之比等于相似比.18、【解析】過點C作CD⊥x軸于點D,根據(jù)AAS可證明△AOB≌△CDB,從而證得S△AOC=S△OCD,最后再利用k的幾何意義即可得到答案.【詳解】解:過點C作CD⊥x軸于點D,如圖所示,∵在△AOB與△CDB中,,∴△AOB≌△CDB(AAS),∴S△AOB=S△CDB,∴S△AOC=S△OCD,∵S△AOC=2,∴S△OCD=2,∴,∴k=±4,又∵反比例函數(shù)圖象在第一象限,k>0,∴k=4.【點睛】本題考查全等三角形的判定與性質(zhì),反比例函數(shù)中比例系數(shù)k的幾何意義,熟練掌握判定定理及k的幾何意義是解題的關(guān)鍵.三、解答題(共78分)19、(1)CG與⊙O相切,理由見解析;(1)見解析;(3)DE=1【解析】(1)連接CE,由AB是直徑知△ECF是直角三角形,結(jié)合G為EF中點知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根據(jù)OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,據(jù)此即可得證;(1)證△ABC∽△FBO得,結(jié)合AB=1BO即可得;(3)證ECD∽△EGC得,根據(jù)CE=3,DG=1.5知,解之可得.【詳解】解:(1)CG與⊙O相切,理由如下:如圖1,連接CE,∵AB是⊙O的直徑,∴∠ACB=∠ACF=90°,∵點G是EF的中點,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG與⊙O相切;(1)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO?AB=BC?BF,∵AB=1BO,∴1OB1=BC?BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=1∠F,又∵∠DCE=1∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴,∵CE=3,DG=1.5,∴,整理,得:DE1+1.5DE﹣9=0,解得:DE=1或DE=﹣4.5(舍),故DE=1.【點睛】本題是圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、切線的判定、相似三角形的判定與性質(zhì)及直角三角形的性質(zhì)等知識點.20、(1)40;(2)60,15;(3)補(bǔ)全條形統(tǒng)計圖見解析;(4)小明回答正確的概率是.【分析】(1)根據(jù)統(tǒng)計圖可知,10人占全班人數(shù)的,據(jù)此求解;(2)根據(jù)(1)中所求,容易得C類占的百分比,用1減去兩類的百分比即可求得類百分比;(3)根據(jù)題意,畫出樹狀圖,根據(jù)概率公式即可求得.【詳解】(1)全班學(xué)生總?cè)藬?shù)為10÷25%=40(人);故答案為:40;(2)B類占的百分比為:×100%=60%;C類占的百分比為1﹣25%﹣60%=15%;故答案為:60,15;(3)C類的人數(shù)40×15%=6(人),補(bǔ)全圖形如下:(4)根據(jù)題意畫圖如下:由樹狀圖可知共有4種可能結(jié)果,其中正確的有1種,所以小明回答正確的概率是.【點睛】本題考查統(tǒng)計圖表的中數(shù)據(jù)的計算,以及樹狀圖的繪制,涉及利用概率公式求隨機(jī)事件的概率,屬綜合基礎(chǔ)題.21、(1)(-1,0),(3,0);(2);(3)1.【分析】(1)根據(jù)OA,OB的長,可得答案;(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(3)根據(jù)相似三角形的判定與性質(zhì),可得EG,EF的長,根據(jù)整式的加減,可得答案.【詳解】解:(1)由拋物線交軸于兩點(A在B的左側(cè)),且OA=1,OB=3,得A點坐標(biāo)(-1,0),B點坐標(biāo)(3,0);(2)設(shè)拋物線的解析式為,把C點坐標(biāo)代入函數(shù)解析式,得解得,拋物線的解析式為;(3)EF+EG=1(或EF+EG是定值),理由如下:過點P作PQ∥y軸交x軸于Q,如圖:設(shè)P(t,-t2+2t+3),則PQ=-t2+2t+3,AQ=1+t,QB=3-t,∵PQ∥EF,∴△BEF∽△BQP∴∴又∵PQ∥EG,∴△AEG∽△AQP,∴∴∴.【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是利用點的坐標(biāo)表示方法;解(2)的關(guān)鍵是利用待定系數(shù)法;解(3)的關(guān)鍵是利用相似三角形的性質(zhì)得出EG,EF的長,又利用了整式的加減.22、(1)反比例函數(shù)為;一次函數(shù)解析式為y=﹣x﹣1;(2)x<﹣2或0<x<1.【分析】(1)由A的坐標(biāo)易求反比例函數(shù)解析式,從而求B點坐標(biāo),進(jìn)而求一次函數(shù)的解析式;(2)觀察圖象,找出一次函數(shù)的圖象在反比例函數(shù)的圖象上方時,x的取值即可.【詳解】解:(1)把A(﹣2,1)代入y=,得m=﹣2,即反比例函數(shù)為y=﹣,將B(1,n)代入y=﹣,解得n=﹣2,即B(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b,得解得k=﹣1,b=﹣1,所以y=﹣x﹣1;(2)由圖象可知:當(dāng)一次函數(shù)的值>反比例函數(shù)的值時,x<﹣2或0<x<1.【點睛】此題考查的是反比例函數(shù)和一次函數(shù)的綜合題,掌握利用待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式和根據(jù)圖象求自變量的取值范圍是解決此題的關(guān)鍵.23、5.5米【分析】過點C作CD⊥AB于點D,設(shè)CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出關(guān)于x的方程,解出即可.【詳解】解:過點C作CD⊥AB于點D,設(shè)CD=x,在Rt△ACD中,∠CAD=30°,則AD=CD=x.在Rt△BCD中,∠CBD=45°,則BD=CD=x.由題意得,x﹣x=4,解得:.答:生命所在點C的深度為5.5米.24、;【分析】(1)根據(jù)題意利用因式分解法進(jìn)行一元二次方程求解;(2)根據(jù)題意確定出頂點坐標(biāo),設(shè)出頂點形式,將(4,-3)代入即可確定出解析式.【詳解】解:;解:由題意可知此拋物線頂點坐標(biāo)為,設(shè)其解析式為,將點代入得:,解得:,此拋物線解析式為:.【點睛】考查一元二次方程求解以及待定系數(shù)法求二次函數(shù)解析式,熟練掌握一元二次方程的解法和待定系數(shù)法求二次函數(shù)解析式是解本題的關(guān)鍵.25、(1)見解析;(2);(3)矩形EFHD的面積最小值為,k=.【分析】(1)由矩形的性質(zhì)得出∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,證出∠EMD=∠FNE=90°,∠NEF=∠MDE,即可得出△MED∽△NFE;(2)設(shè)AM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論