2025屆貴州省貴陽市白云區(qū)九上數(shù)學期末學業(yè)水平測試試題含解析_第1頁
2025屆貴州省貴陽市白云區(qū)九上數(shù)學期末學業(yè)水平測試試題含解析_第2頁
2025屆貴州省貴陽市白云區(qū)九上數(shù)學期末學業(yè)水平測試試題含解析_第3頁
2025屆貴州省貴陽市白云區(qū)九上數(shù)學期末學業(yè)水平測試試題含解析_第4頁
2025屆貴州省貴陽市白云區(qū)九上數(shù)學期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆貴州省貴陽市白云區(qū)九上數(shù)學期末學業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.在反比例函數(shù)的圖像上有三點、、,若,而,則下列各式正確的是()A. B.C. D.2.斜坡坡角等于,一個人沿著斜坡由到向上走了米,下列結(jié)論①斜坡的坡度是;

②這個人水平位移大約米;③這個人豎直升高米;

④由看的俯角為.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個3.如圖所示,拋物線的頂點為,與軸的交點在點和之間,以下結(jié)論:①;②;③;④.其中正確的是()A.①② B.③④ C.②③ D.①③4.二次函數(shù)的頂點坐標為()A. B. C. D.5.已知Rt△ABC,∠ACB=90o,BC=10,AC=20,點D為斜邊中點,連接CD,將△BCD沿CD翻折得△B’CD,B’D交AC于點E,則的值為()A. B. C. D.6.如圖,正方形的頂點分別在軸和軸上,與雙曲線恰好交于的中點.若,則的值為()A.6 B.8 C.10 D.127.下列一元二次方程中,有兩個不相等的實數(shù)根的方程是()A. B. C. D.8.下列條件中,能判斷四邊形是菱形的是()A.對角線互相垂直且相等的四邊形B.對角線互相垂直的四邊形C.對角線相等的平行四邊形D.對角線互相平分且垂直的四邊形9.如圖,菱形的對角線,相交于點,過點作于點,連接,若,,則的長為()A.3 B.4 C.5 D.610.如圖,AD是的高,AE是外接圓的直徑,圓心為點O,且AC=5,DC=3,,則AE等于()A. B. C. D.511.如圖,直線AC,DF被三條平行線所截,若DE:EF=1:2,AB=2,則AC的值為()A.6 B.4 C.3 D.12.如圖1所示的是山西大同北都橋的照片,橋上面的部分是以拋物線為模型設計而成的,從正面觀察該橋的上面部分是一條拋物線,如圖2,若,以所在直線為軸,拋物線的頂點在軸上建立平面直角坐標系,則此橋上半部分所在拋物線的解析式為()A. B.C. D.二、填空題(每題4分,共24分)13.小王存銀行5000元,定期一年后取出3000元,剩下的錢繼續(xù)定期一年存入,如果每年的年利率不變,到期后取出2750元,則年利率為__________.14.如圖,平行四邊形分別切于點,連接并延長交于點,連接與剛好平行,若,則的直徑為______.15.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.16.如圖,在平面直角坐標系中,直線l:與坐標軸分別交于A,B兩點,點C在x正半軸上,且OC=OB.點P為線段AB(不含端點)上一動點,將線段OP繞點O順時針旋轉(zhuǎn)90°得線段OQ,連接CQ,則線段CQ的最小值為___________.17.在平面直角坐標系中,點的坐標分別是,以點為位似中心,相們比為,把縮小,得到,則點的對應點的坐標為_____.18.如果,那么=_____.三、解答題(共78分)19.(8分)先化簡,再求值:÷(1+x+),其中x=tan60°﹣tan45°.20.(8分)如圖,在平面直角坐標系中,矩形的頂點分別在軸和軸的正半軸上,頂點的坐標為(4,2),的垂直平分線分別交于點,過點的反比例函數(shù)的圖像交于點.(1)求反比例函數(shù)的表示式;(2)判斷與的位置關(guān)系,并說明理由;(3)連接,在反比例函數(shù)圖像上存在點,使,直接寫出點的坐標.21.(8分)如圖,二次函數(shù)的圖象與軸相交于、兩點,與軸相交于點,點、是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點、.(1)求二次函數(shù)的解析式和點坐標.(2)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的的取值范圍.22.(10分)如圖,已知在正方形ABCD中,M是BC邊上一定點,連接AM,請用尺規(guī)作圖法,在AM上求作一點P,使得△DPA∽△ABM(不寫做法保留作圖痕跡)23.(10分)在如圖所示的方格紙中,每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點及點O都在格點上(每個小方格的頂點叫做格點).(1)以點O為位似中心,在網(wǎng)格區(qū)域內(nèi)畫出△A′B′C′,使△A′B′C′與△ABC位似(A′、B′、C′分別為A、B、C的對應點),且位似比為2:1;(2)△A′B′C′的面積為個平方單位;(3)若網(wǎng)格中有一格點D′(異于點C′),且△A′B′D′的面積等于△A′B′C′的面積,請在圖中標出所有符合條件的點D′.(如果這樣的點D′不止一個,請用D1′、D2′、…、Dn′標出)24.(10分)在平面直角坐標系中,已知拋物線的表達式為:y=﹣x2+bx+c.(1)根據(jù)表達式補全表格:拋物線頂點坐標與x軸交點坐標與y軸交點坐標(1,0)(0,-3)(2)在如圖的坐標系中畫出拋物線,并根據(jù)圖象直接寫出當y隨x增大而減小時,自變量x的取值范圍.25.(12分)如圖,有三張不透明的卡片,除正面標記有不同數(shù)字外,其它均相同.將這三張卡片反面朝上洗勻后,從中隨機抽取一張;放回洗勻后,再隨機抽取一張.我們把第一次抽取的卡片上標記的數(shù)字記作,第二次抽取的卡片上標記的數(shù)字記作.(1)寫出為負數(shù)的概率;(2)求使得一次函數(shù)的圖象經(jīng)過第二、三、四象限的概率.(用樹狀圖或列表法求解)26.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,,AC為直徑,DE⊥BC,垂足為E.(1)求證:CD平分∠ACE;(2)若AC=9,CE=3,求CD的長.

參考答案一、選擇題(每題4分,共48分)1、A【分析】首先判斷反比例函數(shù)的比例系數(shù)為負數(shù),可得反比例函數(shù)所在象限為二、四,其中在第四象限的點的縱坐標總小于在第二象限的縱坐標,進而判斷在同一象限內(nèi)的點(x1,y1)和(x1,y1)的縱坐標的大小即可.【詳解】∵反比例函數(shù)的比例系數(shù)為-1<0,∴圖象的兩個分支在第二、四象限;∵第四象限的點的縱坐標總小于在第二象限的縱坐標,點(x1,y1)、(x1,y1)在第四象限,點(x3,y3)在第二象限,∴y3最大,∵x1>x1,y隨x的增大而增大,∴y1>y1,∴y3>y1>y1.故選A.【點睛】考查反比例函數(shù)圖象上點的坐標特征;用到的知識點為:反比例函數(shù)的比例系數(shù)小于0,圖象的1個分支在第二、四象限;第四象限的點的縱坐標總小于在第二象限的縱坐標;在同一象限內(nèi),y隨x的增大而增大.2、C【解析】由題意對每個結(jié)論一一分析即可得出其中正確的個數(shù).【詳解】解:如圖,斜坡的坡度為tan30°==1:,正確.

②AB=20米,這個人水平位移是AC,

AC=AB?cos30°=20×≈17.3(米),正確.

③這個人豎直升高的距離是BC,

BC=AB?sin30°=20×=10(米),正確.

④由平行線的性質(zhì)可得由B看A的俯角為30°.所以由B看A的俯角為60°不正確.

所以①②③正確.

故選:C.【點睛】此題考查的知識點是解直角三角形的應用-坡度坡角-仰角俯角問題,關(guān)鍵是熟練掌握相關(guān)概念.3、B【分析】根據(jù)二次函數(shù)的圖象可逐項判斷求解即可.【詳解】解:拋物線與x軸有兩個交點,

∴△>0,

∴b2?4ac>0,故①錯誤;

由于對稱軸為x=?1,

∴x=?3與x=1關(guān)于x=?1對稱,

∵x=?3,y<0,

∴x=1時,y=a+b+c<0,故②錯誤;

∵對稱軸為x=?=?1,

∴2a?b=0,故③正確;

∵頂點為B(?1,3),

∴y=a?b+c=3,

∴y=a?2a+c=3,

即c?a=3,故④正確,

故選B.【點睛】本題考查拋物線的圖象與性質(zhì),解題的關(guān)鍵是熟練運用拋物線的圖象與性質(zhì),本題屬于中等題型.4、D【分析】已知二次函數(shù)y=2x2+3為拋物線的頂點式,根據(jù)頂點式的坐標特點直接寫出頂點坐標.【詳解】∵y=2x2+3=2(x?0)2+3,∴頂點坐標為(0,3).故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì):二次函數(shù)的圖象為拋物線,則解析式為y=a(x?k)2+h的頂點坐標為(k,h),5、A【分析】如圖,過點B作BH⊥CD于H,過點E作EF⊥CD于F,由勾股定理可求AB的長,由銳角三角函數(shù)可求BH,CH,DH的長,由折疊的性質(zhì)可得∠BDC=∠B'DC,S△BCD=S△DCB'=50,利用銳角三角函數(shù)可求EF=,由面積關(guān)系可求解.【詳解】解:如圖,過點B作BH⊥CD于H,過點E作EF⊥CD于F,∵∠ACB=90°,BC=10,AC=20,∴AB=,S△ABC=×10×20=100,∵點D為斜邊中點,∠ACB=90°,∴AD=CD=BD=,∴∠DAC=∠DCA,∠DBC=∠DCB,∴sin∠BCD=sin∠DBC=,∴,∴BH=,∴CH=,∴DH=,∵將△BCD沿CD翻折得△B′CD,∴∠BDC=∠B'DC,S△BCD=S△DCB'=50,∴tan∠BDC=tan∠B'DC=,∴,∴設DF=3x,EF=4x,∵tan∠DCA=tan∠DAC=,∴,∴FC=8x,∵DF+CF=CD,∴3x+8x=,∴x=,∴EF=,∴S△DEC=×DC×EF=,∴S△CEB'=50-=,∴,故選:A.【點睛】本題考查了翻折變換,直角三角形的性質(zhì),銳角三角函數(shù)的性質(zhì),勾股定理等知識,添加恰當輔助線是本題的關(guān)鍵.6、D【分析】作EH⊥x軸于點H,EG⊥y軸于點G,根據(jù)“OB=2OA”分別設出OB和OA的長度,利用矩形的性質(zhì)得出△EBG∽△BAO,再根據(jù)相似比得出BG和EG的長度,進而寫出點E的坐標代入反比例函數(shù)的解析式,即可得出答案.【詳解】作EH⊥x軸于點H,EG⊥y軸于點G設AO=a,則OB=2OA=2a∵ABCD為正方形∴∠ABC=90°,AB=BC∵EG⊥y軸于點G∴∠EGB=90°∴∠EGB=∠BOA=90°∠EBG+∠BEG=90°∴∠BEG=∠ABO∴△EBG∽△BAO∴∵E是BC的中點∴∴∴BG=,EG=a∴OG=BO-BG=∴點E的坐標為∵E在反比例函數(shù)上面∴解得:∴AO=,BO=故答案選擇D.【點睛】本題考查的是反比例函數(shù)與幾何的綜合,難度系數(shù)較高,解題關(guān)鍵是根據(jù)題意求出點E的坐標.7、D【分析】根據(jù)根的判別式△=b2-4ac的值的符號,可以判定個方程實數(shù)根的情況,注意排除法在解選擇題中的應用.【詳解】解:A.∵△=b2-4ac=1-4×1×1=-3<0,

∴此方程沒有實數(shù)根,故本選項錯誤;

B.變形為

∴此方程有沒有實數(shù)根,故本選項錯誤;C.∵△=b2-4ac=22-4×1×1=0,

∴此方程有兩個相等的實數(shù)根,故本選項錯誤;

D.∵△=b2-4ac=42-4×1×1=12,

∴此方程有兩個不相等的實數(shù)根,故本選項正確.

故選:D.【點睛】此題考查了一元二次方程根的判別式的知識.此題比較簡單,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當△>0時,方程有兩個不相等的兩個實數(shù)根;②當△=0時,方程有兩個相等的兩個實數(shù)根;③當△<0時,方程無實數(shù)根.8、D【解析】利用菱形的判定方法對各個選項一一進行判斷即可.【詳解】解:A、對角線互相垂直相等的四邊形不一定是菱形,此選項錯誤;B、對角線互相垂直的四邊形不一定是菱形,此選項錯誤;C、對角線相等的平行四邊形也可能是矩形,此選項錯誤;D、對角線互相平分且垂直的四邊形是菱形,此選項正確;故選:D.【點睛】本題考查了菱形的判定,平行四邊形的性質(zhì),熟練運用這些性質(zhì)是本題的關(guān)鍵.9、A【分析】根據(jù)菱形面積的計算公式求得AC,再利用直角三角形斜邊中線的性質(zhì)即可求得答案.【詳解】∵四邊形ABCD是菱形,OB=4,∴∵,∴,∴;∵AH⊥BC,∴.故選:A.【點睛】本題考查了菱形的性質(zhì)及直角三角形斜邊的中線等于斜邊的一半的性質(zhì),根據(jù)菱形的面積公式:菱形的面積等于兩條對角線乘積的一半是解題的關(guān)鍵.10、C【分析】由AD是的高可得和為直角三角形,由勾股定理求得AD的長,解三角形得AB的長,連接BE.由同弧所對的圓周角相等可知∠BEA=∠ACB,解直角三角形ABE即可求出AE.【詳解】解:如圖,連接BE,∵AD是的高,∴和為直角三角形,∵AC=5,DC=3,,∴AD=4,,∵,∴∠BEA=∠ACB,∵AE是的直徑,∴,即是直角三角形,sin∠BEA=sin∠ACB=,∴,故選:C.【點睛】本題考查了直徑所對的圓周角是直角、同弧所對的圓周角相等、解直角三角形和勾股定理,熟練掌握定理是解題的關(guān)鍵.11、A【分析】根據(jù)平行線分線段成比例定理得到比例式,求出BC,計算即可.【詳解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.

故選:A.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應關(guān)系是解題的關(guān)鍵.12、A【分析】首先設拋物線的解析式y(tǒng)=ax2+bx+c,由題意可以知道A(-30,0)B(30,0)C(0,15)代入即可得到解析式.【詳解】解:設此橋上半部分所在拋物線的解析式為y=ax2+bx+c∵AB=60OC=15∴A(-30,0)B(30,0)C(0,15)將A、B、C代入y=ax2+bx+c中得到y(tǒng)=-x2+15故選A【點睛】此題主要考查了二次函數(shù)的實際應用問題,主要培養(yǎng)學生用數(shù)學知識解決實際問題的能力.二、填空題(每題4分,共24分)13、【分析】設定期一年的利率是,則存入一年后的本息和是元,取3000元后余元,再存一年則有方程,解這個方程即可求解.【詳解】解:設定期一年的利率是,根據(jù)題意得:一年時:,取出3000后剩:,同理兩年后是,即方程為,解得:,(不符合題意,故舍去),即年利率是.故答案為:10%.【點睛】此題考查了列代數(shù)式及一元二次方程的應用,是有關(guān)利率的問題,關(guān)鍵是掌握公式:本息和本金利率期數(shù)),難度一般.14、【分析】先證得四邊形AGCH是平行四邊形,則,再證得,求得,證得DO⊥HC,根據(jù),即可求得半徑,從而求得結(jié)論.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,∵AG∥HC,∴四邊形AGCH是平行四邊形,∴,∵是⊙O的切線,且切點為、,∴,∠GCH=∠HCD,∵AD∥BC,∴∠DHC=∠GCH,∴∠DHC=∠HCD,∴三角形DHC為等腰三角形,∴,∴,∴,,連接OD、OE,如圖,∵是⊙O的切線,且切點為、,∴DO是∠FDE的平分線,又∵,∴DO⊥HC,∴∠DOC=90,∵切⊙O于,∴OE⊥CD,∵∠OCE+∠COE=90,∠DOE+∠COE=90,∴∠OCE=∠DOE,∴,∴,即,∴,∴⊙O的直徑為:故答案為:.【點睛】本題考查了平行四邊形的判定和性質(zhì),切線長定理,相似三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),證得為等腰三角形是解題的關(guān)鍵.15、【詳解】解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質(zhì)以及銳角三角函數(shù)關(guān)系等知識,得出A′點位置是解題關(guān)鍵.16、【分析】在OA上取使,得,則,根據(jù)點到直線的距離垂線段最短可知當⊥AB時,CP最小,由相似求出的最小值即可.【詳解】解:如圖,在OA上取使,∵,∴,在△和△QOC中,,∴△≌△QOC(SAS),∴∴當最小時,QC最小,過點作⊥AB,∵直線l:與坐標軸分別交于A,B兩點,∴A坐標為:(0,8);B點(-4,0),∵,∴,.∵,∴,∴,∴線段CQ的最小值為.故答案為:.【點睛】本題主要考查了一次函數(shù)圖像與坐標軸的交點及三角形全等的判定和性質(zhì)、垂線段最短等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學會利用垂線段最短解決最值問題,屬于中考壓軸題.17、或【解析】利用位似圖形的性質(zhì)可得對應點坐標乘以和-即可求解.【詳解】解:以點為位似中心,相似比為,把縮小,點的坐標是則點的對應點的坐標為或,即或,故答案為:或.【點睛】本題考查的是位似圖形,熟練掌握位似變換是解題的關(guān)鍵.18、【解析】試題解析:設a=2t,b=3t,故答案為:三、解答題(共78分)19、,.【分析】先根據(jù)分式混合運算的法則把原式進行化簡,再求出x的值代入進行計算即可.【詳解】原式?.當x=tan60°﹣tan45°1時,原式.【點睛】本題考查了分式的化簡求值,熟知分式混合運算的法則是解答此題的關(guān)鍵.20、(1)反比例函數(shù)表達式為;(2),證明見解析;(3).【分析】(1)求出點橫坐標,也就是.由垂直平分,得到,,,在,,求出,從而求出.(2)方法一:通過邊長關(guān)系可證,為公共角,從而,,;方法二:求出直線與直線的解析式,系數(shù)相等,所以方法三:延長交軸于點,證明,四邊形是平行四邊形,.(3)求出,根據(jù),設,代入點坐標,求得,與聯(lián)立,求出的坐標.【詳解】(1)連接,∵垂直平分,∴.∵,∴.設,則,∵四邊形矩形,∴,.在中,.即.解得.∴點.將點的坐標代入中,得.∴所求反比例函數(shù)表達式為.(2).方法一:將代入得,,∴點.∵,,,,∴,,,.∴,.∴.∵,∴.∴.∴.方法二:將代入得,,∴點.由(1)知,,.設直線的函數(shù)表達式為,∵點在直線上,∴,∴.∴設直線的函數(shù)表達式為.設直線的函數(shù)表達式為,∵點在直線上,∴解得∴直線的函數(shù)表達式為.∵直線與直線的值為,∴直線與直線平行.∴.方法三:延長交軸于點,設直線的函數(shù)表達式為,∵點在直線上,∴解得∴直線的函數(shù)表達式為.將代入中,得.∴點.∴,.∴.∵四邊形矩形,∴.∴四邊形是平行四邊形.∴.(3).【點睛】本題考查了反比例函數(shù)的求法,平行的性質(zhì)以及兩直線垂直的性質(zhì).21、(1)y=﹣x2﹣2x+3,(﹣2,3);(2)﹣2<x<1【分析】(1)根據(jù)C、D關(guān)于對稱軸x=-1對稱,C(0,3),可以求出點D坐標.設二次函數(shù)解析式為y=a(x+3)(x-1),把C(0,3)代入得到求出a即可.

(2)一次函數(shù)值小于二次函數(shù)值,在圖象上一次函數(shù)的圖象在二次函數(shù)的圖象下面即可寫出x的范圍.【詳解】解:(1)設該拋物線的解析式為y=a(x+3)(x﹣1)(a≠0),把C(0,3)代入,得:3=a(0+3)(0﹣1),解,得a=﹣1,所以該拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3,即y=﹣x2﹣2x+3;∵拋物線的對稱軸是x=﹣1,而,C、D關(guān)于直線x=﹣1對稱,∴D(﹣2,3);(2)根據(jù)圖象知,一次函數(shù)值小于二次函數(shù)值的x的取值范圍是:﹣2<x<1【點睛】本題考查二次函數(shù)綜合題,主要考查了二次函數(shù)的對稱性,以及待定系數(shù)法求二次函數(shù)解析式和利用自變量的取值范圍確定函數(shù)值大小關(guān)系.22、作圖見解析.【解析】根據(jù)尺規(guī)作圖的方法過點D作AM的垂線即可得【詳解】如圖所示,點P即為所求作的點.【點睛】本題考查了尺規(guī)作圖——作垂線,熟練掌握作圖的方法是解題的關(guān)鍵.23、(1)詳見解析;(2)10;(3)詳見解析【分析】(1)依據(jù)點O為位似中心,且位似比為2:1,即可得到△A′B′C′;(2)依據(jù)割補法進行計算,即可得出△A′B′C′的面積;(3)依據(jù)△A′B′D′的面積等于△A′B′C′的面積,即可得到所有符合條件的點D′.【詳解】解:(1)如圖所示,△A′B′C′即為所求;(2)△A′B′C′的面積為4×6﹣×2×4﹣×2×4﹣×2×6=24﹣4﹣4﹣6=10;故答案為:10;(3)如圖所示,所有符合條件的點D′有5個.【點睛】此題主要考查位似圖形的作圖,解題的關(guān)鍵是熟知位似圖形的性質(zhì)及網(wǎng)格的特點.24、(1)補全表格見解析;(1)圖象見解析;當y隨x增大而減小時,x的取值范圍是x>1.【分析】(1)根據(jù)待定系數(shù)法,把點(1,0),(0,-3)坐標代入得,則可確定拋物線解析式為,然后把

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論