版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省黃岡市黃州區(qū)啟黃中學(xué)2025屆數(shù)學(xué)九上期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,是的直徑,點,在上,連接,,,如果,那么的度數(shù)是()A. B. C. D.2.已知反比例函數(shù)的圖象經(jīng)過點,小良說了四句話,其中正確的是()A.當(dāng)時, B.函數(shù)的圖象只在第一象限C.隨的增大而增大 D.點不在此函數(shù)的圖象上3.如圖,AD是的一條角平分線,點E在AD上.若,,則與的面積比為()A.1:5 B.5:1 C.3:20 D.20:34.如圖,是半圓的直徑,點在的延長線上,切半圓于點,連接.若,則的度數(shù)為()A. B. C. D.5.用一條長為40cm的繩子圍成一個面積為acm2的長方形,a的值不可能為()A.20 B.40 C.100 D.1206.如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.7.把拋物線y=-x2向下平移1個單位長度,再向左平移1個單位長度,得到的拋物線解析式為()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-18.下列一元二次方程,有兩個不相等的實數(shù)根的是()A. B.C. D.9.將二次函數(shù)的圖象先向左平移4個單位長度,再向下平移1個單位長度后,所得新的圖象的函數(shù)表達(dá)式為()A. B.C. D.10.在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,AD:DB=4:5,下列結(jié)論中正確的是A. B. C. D.二、填空題(每小題3分,共24分)11.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達(dá)式是_____.12.已知反比例函數(shù)的圖象的一支位于第一象限,則常數(shù)m的取值范圍是___.13.從一批節(jié)能燈中隨機(jī)抽取40只進(jìn)行檢查,發(fā)現(xiàn)次品2只,則在這批節(jié)能燈中隨機(jī)抽取一只是次品的概率為_______.14.已知△ABC中,AB=10,AC=2,∠B=30°,則△ABC的面積等于_____.15.若,則=____________.16.甲、乙兩個籃球隊隊員身高的平均數(shù)都為2.07米,方差分別是、,且,則隊員身高比較整齊的球隊是_____.17.如圖,四邊形ABCD內(nèi)接于⊙O,若∠BOD=140°,則∠BCD=_____.18.如圖,已知A(,y1),B(2,y2)為反比例函數(shù)y=圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當(dāng)線段AP與線段BP之差達(dá)到最大時,點P的坐標(biāo)是_____.三、解答題(共66分)19.(10分)如圖,四邊形中,,平分,點是延長線上一點,且.(1)證明:;(2)若與相交于點,,求的長.20.(6分)如圖,為了測量山腳到塔頂?shù)母叨龋吹拈L),某同學(xué)在山腳處用測角儀測得塔頂?shù)难鼋菫?,再沿坡度為的小山坡前進(jìn)400米到達(dá)點,在處測得塔頂?shù)难鼋菫?(1)求坡面的鉛垂高度(即的長);(2)求的長.(結(jié)果保留根號,測角儀的高度忽略不計).21.(6分)小強(qiáng)在教學(xué)樓的點P處觀察對面的辦公大樓.為了測量點P到對面辦公大樓上部AD的距離,小強(qiáng)測得辦公大樓頂部點A的仰角為45°,測得辦公大樓底部點B的俯角為60°,已知辦公大樓高46米,CD=10米.求點P到AD的距離(用含根號的式子表示).22.(8分)如圖,在正方形中,對角線、相交于點,為上動點(不與、重合),作,垂足為,分別交、于、,連接、.(1)求證:;(2)求的度數(shù);(3)若,,求的面積.23.(8分)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.1.tan18°≈0.32,sin36°≈0.2.cos36°≈0.81,tan36°≈0.73)24.(8分)如圖,反比例函數(shù)y=的圖象與直線y=x+m在第一象限交于點P(6,2),A、B為直線上的兩點,點A的橫坐標(biāo)為2,點B的橫坐標(biāo)為1.D、C為反比例函數(shù)圖象上的兩點,且AD、BC平行于y軸.(1)求反比例函數(shù)y=與直線y=x+m的函數(shù)關(guān)系式(2)求梯形ABCD的面積.25.(10分)如圖,直線交軸于點,交軸于點,拋物線經(jīng)過點,交軸于點,點為拋物線上一動點,過點作軸的垂線,交直線于點,設(shè)點的橫坐標(biāo)為.(1)求拋物線的解析式.(2)當(dāng)點在直線下方的拋物線上運動時,求出長度的最大值.(3)當(dāng)以,,為頂點的三角形是等腰三角形時,求此時的值.26.(10分)如圖,中,,是斜邊上一個動點,以為直徑作交于點,與的另一個交點,連接.(1)當(dāng)時,①若,求的度數(shù);②求證;(2)當(dāng),時,是否存在點,使得是等腰三角形,若存在,求出所有符合條件的的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進(jìn)而求得∠B的度數(shù),再求的度數(shù).【詳解】∵AB是⊙0的直徑,
∴∠ADB=90°.
∵,
∴∠B=65°,(同弧所對的圓周角相等).
∴∠BAD=90°-65°=25°故選:C【點睛】本題考查圓周角定理中的兩個推論:①直徑所對的圓周角是直角②同弧所對的圓周角相等.2、D【分析】利用待定系數(shù)法求出k,即可根據(jù)反比例函數(shù)的性質(zhì)進(jìn)行判斷.【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點(3,2),∴k=2×3=6,∴,∴圖象在一、三象限,在每個象限y隨x的增大而減小,故A,B,C錯誤,∴點不在此函數(shù)的圖象上,選項D正確;故選:D.【點睛】本題考查反比例函數(shù)圖象上的點的特征,教育的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.3、C【分析】根據(jù)已知條件先求得S△ABE:S△BED=3:2,再根據(jù)三角形相似求得S△ACD=S△ABE=S△BED,根據(jù)S△ABC=S△ABE+S△ACD+S△BED即可求得.【詳解】解:∵AE:ED=3:2,
∴AE:AD=3:5,
∵∠ABE=∠C,∠BAE=∠CAD,
∴△ABE∽△ACD,
∴S△ABE:S△ACD=9:25,
∴S△ACD=S△ABE,
∵AE:ED=3:2,
∴S△ABE:S△BED=3:2,
∴S△ABE=S△BED,
∴S△ACD=S△ABE=S△BED,
∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,
∴S△BDE:S△ABC=3:20,
故選:C.【點睛】本題考查了相似三角形的判定和性質(zhì),不同底等高的三角形面積的求法等,等量代換是本題的關(guān)鍵.4、D【分析】根據(jù)題意,連接OC,由切線的性質(zhì)可知,再由圓周角定理即可得解.【詳解】依題意,如下圖,連接OC,∵切半圓于點,∴OC⊥CP,即∠OCP=90°,∵,∴,∴,故選:D.【點睛】本題主要考查了切線的性質(zhì)及圓周角定理,熟練掌握相關(guān)知識是解決本題的關(guān)鍵.5、D【分析】設(shè)圍成面積為acm2的長方形的長為xcm,由長方形的周長公式得出寬為(40÷2﹣x)cm,根據(jù)長方形的面積公式列出方程x(40÷2﹣x)=a,整理得x2﹣20x+a=0,由△=400﹣4a≥0,求出a≤100,即可求解.【詳解】設(shè)圍成面積為acm2的長方形的長為xcm,則寬為(40÷2﹣x)cm,依題意,得x(40÷2﹣x)=a,整理,得x2﹣20x+a=0,∵△=400﹣4a≥0,解得a≤100,故選D.6、D【分析】根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結(jié)合圖形根據(jù)正切的定義進(jìn)行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關(guān)鍵.7、B【解析】試題分析:根據(jù)拋物線的平移規(guī)律“左加右減,上加下減”,可直接求得平移后的拋物線的解析式為:.8、B【分析】分別計算出各選項中方程根的判別式的值,找出大于0的選項即可得答案.【詳解】A.方程x2+6x+9=0中,△=62-4×1×9=0,故方程有兩個相等的實數(shù)根,不符合題意,B.方程中,△=(-1)2-4×1×0=1>0,故方程有兩個不相等的實數(shù)根,符合題意,C.方程可變形為(x+1)2=-1<0,故方程沒有實數(shù)根,不符合題意,D.方程中,△=(-2)2-4×1×3=-8<0,故方程沒有實數(shù)根,不符合題意,故選:B.【點睛】本題考查一元二次方程根的判別式,對于一元二次方程ax2+bx+c=0(a≠0),根的判別式為△=b2-4ac,當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根,當(dāng)△<0時,方程沒有實數(shù)根.9、B【分析】根據(jù)題意直接利用二次函數(shù)平移規(guī)律進(jìn)而判斷得出選項.【詳解】解:的圖象向左平移4個單位長度,再向下平移1個單位長度,平移后的函數(shù)關(guān)系式是:.故選:B.【點睛】本題考查二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.10、B【分析】根據(jù)平行線分線段成比例,相似三角形性質(zhì),以及合比性質(zhì),分別對每個選項進(jìn)行判斷,即可得到答案.【詳解】解:如圖,在△ABC中,DE∥BC,AD∶DB=4∶5,則∴△ADE∽△ABC,∴,故A錯誤;則,故B正確;則,故C錯誤;則,故D錯誤.故選擇:B.【點睛】本題考查了相似三角形的性質(zhì),平行線分線段成比例,合比性質(zhì),解題的關(guān)鍵是熟練掌握平行線分線段成比例的性質(zhì).二、填空題(每小題3分,共24分)11、y=2(x+3)2+1【解析】由于拋物線平移前后二次項系數(shù)不變,然后根據(jù)頂點式寫出新拋物線解析式.【詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達(dá)式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.12、m>1【解析】試題分析:∵反比例函數(shù)的圖象關(guān)于原點對稱,圖象一支位于第一象限,∴圖象的另一分支位于第三象限.∴m﹣1>0,解得m>1.13、【分析】利用概率公式求解可得.【詳解】解:在這批節(jié)能燈中隨機(jī)抽取一只是次品的概率為=,故答案為:.【點睛】本題考查概率公式,熟練掌握計算法則是解題關(guān)鍵.14、15或10【分析】作AD⊥BC交BC(或BC延長線)于點D,分AB、AC位于AD異側(cè)和同側(cè)兩種情況,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的長,繼而就兩種情況分別求出BC的長,根據(jù)三角形的面積公式求解可得.【詳解】解:作AD⊥BC交BC(或BC延長線)于點D,①如圖1,當(dāng)AB、AC位于AD異側(cè)時,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD=,則BC=BD+CD=6,∴S△ABC=?BC?AD=×6×5=15;②如圖2,當(dāng)AB、AC在AD的同側(cè)時,由①知,BD=5,CD=,則BC=BD-CD=4,∴S△ABC=?BC?AD=×4×5=10.綜上,△ABC的面積是15或10,故答案為15或10.【點睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握三角函數(shù)的運用、分類討論思想的運算及勾股定理.15、【分析】根據(jù)合比定理即可得答案.【詳解】∵,∴,∴=,故答案為:【點睛】本題考查合比定理,如果,那么;熟練掌握合比定理是解題關(guān)鍵.16、乙【解析】根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】解:∵,∴隊員身高比較整齊的球隊是乙,故答案為:乙.【點睛】本題考查方差.解題關(guān)鍵在于知道方差是用來衡量一組數(shù)據(jù)波動大小的量17、110°.【分析】由圓周角定理,同弧所對的圓心角是圓周角的2倍.可求∠A=∠BOD=70°,再根據(jù)圓內(nèi)接四邊形對角互補,可得∠C=180-∠A=110°【詳解】∵∠BOD=140°∴∠A=∠BOD=70°∴∠C=180°-∠A=110°,故答案為:110°.【點睛】此題考查圓周角定理,解題的關(guān)鍵在于利用圓內(nèi)接四邊形的性質(zhì)求角度.18、【解析】試題解析:∵把A(,y1),B(2,y2)代入反比例函數(shù)y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三邊關(guān)系定理得:|AP-BP|<AB,∴延長AB交x軸于P′,當(dāng)P在P′點時,PA-PB=AB,即此時線段AP與線段BP之差達(dá)到最大,設(shè)直線AB的解析式是y=ax+b(a≠0)把A、B的坐標(biāo)代入得:,解得:,∴直線AB的解析式是y=-x+,當(dāng)y=0時,x=,即P(,0);故答案為(,0).三、解答題(共66分)19、(1)詳見解析;(2)【分析】(1)直接利用等腰三角形的性質(zhì)結(jié)合互余的定義得出∠BDC=∠PDC;(2)首先過點C作CM⊥PD于點M,進(jìn)而得出△CPM∽△APD,求出EC的長即可得出答案.【詳解】解:(1):∵,平分,∴,∴,∵,∴,∴,∴;(2)過點作于點,∵,∴,∵,∴,∴,設(shè),∵,∴,∵,∴,解得:,∴.【點睛】此題主要考查了相似三角形的判定與性質(zhì)以及等腰三角形的性質(zhì)等知識,正確得出△CPM∽△APD是解題關(guān)鍵.20、(1)200;(2).【分析】(1)根據(jù)AB的坡度得,再根據(jù)∠BAH的正弦和斜邊長度即可解答;(2)過點作于點,得到矩形,再設(shè)米,再由∠DBE=60°的正切值,用含x的代數(shù)式表示DE的長,而矩形中,CE=BH=200米,可得DC的長,米,最后根據(jù)△ADC是等腰三角形即可解答.【詳解】解:(1)在中,,∴∴米(2)過點作于點,如圖:∴四邊形是矩形,∴米設(shè)米∴在中,米∴米在中∴米在中,,∴即解得∴米(本題也可通過證明矩形是正方形求解.)【點睛】本題考查解直角三角形,解題關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)表示出相關(guān)線段的長度.21、.【分析】連接PA、PB,過點P作PM⊥AD于點M;延長BC,交PM于點N,將實際問題中的已知量轉(zhuǎn)化為直角三角形中的有關(guān)量,設(shè)PM=x米,在Rt△PMA中,表示出AM,在Rt△PNB中,表示出BN,由AM+BN=46米列出方程求解即可.【詳解】解:連結(jié)PA、PB,過點P作PM⊥AD于點M;延長BC,交PM于點N則∠APM=45°,∠BPM=60°,NM=10米設(shè)PM=x在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(-10)tan60°=(-10)(米^由AM+BN=46米,得x+(x-10)=46解得,x==∴點P到AD的距離為米【點睛】此題考查了解直角三角形的知識,作出輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.22、(1)見解析;(2);(3)3【分析】(1)結(jié)合正方形的性質(zhì)利用ASA即可證明;(2)由兩組對應(yīng)角相等可證,由相似三角形對應(yīng)線段成比例再等量代換可得,由兩邊對應(yīng)成比例及其夾角相等的兩個三角形相似可證,由相似三角形對應(yīng)角相等可得的度數(shù);(3)結(jié)合相似三角形對應(yīng)角相等及直角三角形的性質(zhì)根據(jù)兩組對應(yīng)角相等的兩個三角形相似可證,由其對應(yīng)線段成比例的性質(zhì)可得的值,由三角形面積公式計算即可.【詳解】解:(1)四邊形是正方形,,,,,,(2),,,,,,(3),,即,,,即,,,,,.【點睛】本題綜合考查了正方形與三角形的綜合,涉及了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、直角三角形的性質(zhì),靈活的利用相似三角形的判定與性質(zhì)是解題的關(guān)鍵.23、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD?tan∠ACD=5.9×0.32=1.888≈1.9(米),則改建后南屋面邊沿增加部分AD的長約為1.9米.考點:解直角三角形的應(yīng)用24、(1)y=,y=x-4(2)s=6.5【解析】考點:反比例函數(shù)綜合題.分析:(1)由于反比例函數(shù)y=的圖象與直線y=x+m在第一象限交于點P(6,2),則把A(6,2)分別代入兩個解析式可求出k與b的值,從而確定反比例函數(shù)y=與直線y=x+m的函數(shù)關(guān)系式;(2)先把點A的橫坐標(biāo)為2,點B的橫坐標(biāo)為1代入y=x-4中得到對應(yīng)的縱坐標(biāo),則可確定A點坐標(biāo)為(2,-2),點B的坐標(biāo)為(1,-1),由AD、BC平行于y軸可得點D的橫坐標(biāo)為2,點C的橫坐標(biāo)為1,然后把它們分別代入y=中,可確定D點坐標(biāo)為(2,6),點C的坐標(biāo)為(1,4),然后根據(jù)梯形的面積公式計算即可.解:(1)∵點P(6,2)在反比例函數(shù)y=的圖象上,∴k=6×2=12,∴反比例函數(shù)的解析式為y=;∵點P(6,2)在直線y=x+m上,∴6+m=2,解得m=-4,∴直線的解析式為y=x-4;(2)∵點A、B在直線y=x-4上,∴當(dāng)x=2時,y=2-4=-2,當(dāng)x=1時,y=1-4=-1,∴A點坐標(biāo)為(2,-2),點B的坐標(biāo)為(1,-1),又∵AD、BC平行于y軸,∴點D的橫坐標(biāo)為2,點C的橫坐標(biāo)為1,而點D、C為反比例函數(shù)y=的圖象上,∴當(dāng)x=2,則y=6,當(dāng)x=1,則y=4,∴D點坐標(biāo)為(2,6),點C的坐標(biāo)為(1,4),∴DA=6-(-2)=8,CB=4-(-1)=5,∴梯形ABCD的面積=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房屋買賣合同中的房屋抵押及解押約定3篇
- 二零二五河南事業(yè)單位100人招聘項目合同執(zhí)行標(biāo)準(zhǔn)3篇
- 二零二五版建筑工程項目現(xiàn)場勘察與監(jiān)測服務(wù)合同3篇
- 二零二五版混凝土結(jié)構(gòu)防雷接地施工合同2篇
- 二零二五年度草場承包管理與開發(fā)合同范本3篇
- 二零二五版國際貿(mào)易實務(wù)實驗報告與國際貿(mào)易實務(wù)實訓(xùn)合同3篇
- 二零二五年度虛擬現(xiàn)實(VR)技術(shù)研發(fā)合同3篇
- 二零二五年度特種貨物安全運輸服務(wù)合同范本2篇
- 二零二五年度體育設(shè)施建設(shè)與運營管理復(fù)雜多條款合同3篇
- 二零二五年度電梯門套安裝與安全性能檢測合同3篇
- 電線電纜加工質(zhì)量控制流程
- 提優(yōu)精練08-2023-2024學(xué)年九年級英語上學(xué)期完形填空與閱讀理解提優(yōu)精練(原卷版)
- DB4511T 0002-2023 瓶裝液化石油氣充裝、配送安全管理規(guī)范
- 企業(yè)內(nèi)部客供物料管理辦法
- 婦科臨床葡萄胎課件
- 三基三嚴(yán)練習(xí)題庫與答案
- 傳媒行業(yè)突發(fā)事件應(yīng)急預(yù)案
- 債務(wù)抵租金協(xié)議書范文范本
- 藥學(xué)技能競賽標(biāo)準(zhǔn)答案與評分細(xì)則處方
- 小學(xué)英語時態(tài)練習(xí)大全(附答案)-小學(xué)英語時態(tài)專項訓(xùn)練及答案
- (高清版)JTGT 3360-01-2018 公路橋梁抗風(fēng)設(shè)計規(guī)范
評論
0/150
提交評論