版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆重慶市文理院附屬中學(xué)九上數(shù)學(xué)期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.一個菱形的邊長為,面積為,則該菱形的兩條對角線的長度之和為()A. B. C. D.2.如圖,中,,頂點,分別在反比例函數(shù)()與()的圖象上.則下列等式成立的是()A. B. C. D.3.如圖,在平面直角坐標系內(nèi),四邊形ABCD為菱形,點A,B的坐標分別為(﹣2,0),(0,﹣1),點C,D分別在坐標軸上,則菱形ABCD的周長等于()A. B.4 C.4 D.204.如圖,在Rt△ABC中,∠ACB=90°,CD為AB邊上的高,CE為AB邊上的中線,AD=2,CE=5,則CD=()A.2 B.3 C.4 D.25.兩個相鄰自然數(shù)的積是1.則這兩個數(shù)中,較大的數(shù)是()A.11 B.12 C.13 D.146.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在A的下方,點E是邊長為2,中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為A.3 B. C.4 D.7.如圖,與正方形ABCD的兩邊AB,AD相切,且DE與相切于點E.若的半徑為5,且,則DE的長度為()A.5 B.6 C. D.8.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.當點B的對應(yīng)點D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°9.如圖,邊長為a,b的長方形的周長為14,面積為10,則a3b+ab3的值為()A.35 B.70 C.140 D.29010.如圖,已知△ABC和△EDC是以點C為位似中心的位似圖形,且△ABC和△EDC的周長之比為1:2,點C的坐標為(﹣2,0),若點B的坐標為(﹣5,1),則點D的坐標為()A.(4,﹣2) B.(6,﹣2) C.(8,﹣2) D.(10,﹣2)二、填空題(每小題3分,共24分)11.如圖拋物線y=ax2+bx+c的對稱軸是x=﹣1,與x軸的一個交點為(﹣5,0),則不等式ax2+bx+c>0的解集為_____.12.2018年10月21日,河間市詩經(jīng)國際馬拉松比賽拉開帷幕,電視臺動用無人機航拍技術(shù)全程錄像.如圖,是無人機觀測AB兩選手在某水平公路奔跑的情況,觀測選手A處的俯角為,選手B處的俯角為45o.如果此時無人機鏡頭C處的高度CD=20米,則AB兩選手的距離是_______米.13.已知拋物線,當時,的取值范圍是______________14.如圖,以點為位似中心,將放大后得到,,則____.15.下列投影或利用投影現(xiàn)象中,________是平行投影,________是中心投影.(填序號)16.如圖,如果將半徑為的圓形紙片剪去一個圓心角為的扇形,用剩下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的底面圓半徑為______.17.如圖,Rt△ABC中,∠ACB=90°,AC=BC=4,D為線段AC上一動點,連接BD,過點C作CH⊥BD于H,連接AH,則AH的最小值為_____.18.如圖,在中,,且,,點是斜邊上的一個動點,過點分別作于點,于點,連接,則線段的最小值為________.三、解答題(共66分)19.(10分)如圖1,在矩形ABCD中,點P是BC邊上一點,連接AP交對角線BD于點E,.作線段AP的中垂線MN分別交線段DC,DB,AP,AB于點M,G,F,N.(1)求證:;(2)若,求.(3)如圖2,在(2)的條件下,連接CF,求的值.20.(6分)在“書香校園”活動中,某校為了解學(xué)生家庭藏書情況,隨機抽取本校部分學(xué)生進行調(diào)查,并繪制成部分統(tǒng)計圖表如下:類別家庭藏書m本學(xué)生人數(shù)A0≤m≤2520B26≤m≤50aC51≤m≤7550Dm≥7666根據(jù)以上信息,解答下列問題:(1)該調(diào)查的樣本容量為,a=;(2)隨機抽取一位學(xué)生進行調(diào)查,剛好抽到A類學(xué)生的概率是;(3)若該校有2000名學(xué)生,請估計全校學(xué)生中家庭藏書不少于76本的人數(shù).21.(6分)現(xiàn)有3個型號相同的杯子,其中A等品2個,B等品1個,從中任意取1個杯子,記下等級后放回,第二次再從中取1個杯子,(1)用恰當?shù)姆椒信e出兩次取出杯子所有可能的結(jié)果;(2)求兩次取出至少有一次是B等品杯子的概率.22.(8分)已知拋物線經(jīng)過點和,與軸交于另一點,頂點為.(1)求拋物線的解析式,并寫出點的坐標;(2)如圖,點分別在線段上(點不與重合),且,則能否為等腰三角形?若能,求出的長;若不能,請說明理由;(3)若點在拋物線上,且,試確定滿足條件的點的個數(shù).23.(8分)如圖,中,,,平分,交軸于點,點是軸上一點,經(jīng)過點、,與軸交于點,過點作,垂足為,的延長線交軸于點,(1)求證:為的切線;(2)求的半徑.24.(8分)一次函數(shù)分別與軸、軸交于點、.頂點為的拋物線經(jīng)過點.(1)求拋物線的解析式;(2)點為第一象限拋物線上一動點.設(shè)點的橫坐標為,的面積為.當為何值時,的值最大,并求的最大值;(3)在(2)的結(jié)論下,若點在軸上,為直角三角形,請直接寫出點的坐標.25.(10分)如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:(1)OA=_____,(2)作出∠AOB的平分線并在其上標出一個點Q,使.26.(10分)如圖,AB、CD、EF是與路燈在同一直線上的三個等高的標桿,已知AB、CD在路燈光下的影長分別為BM、DN,在圖中作出EF的影長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】如圖,根據(jù)菱形的性質(zhì)可得,,,再根據(jù)菱形的面積為,可得①,由邊長結(jié)合勾股定理可得②,由①②兩式利用完全平方公式的變形可求得,進行求得,即可求得答案.【詳解】如圖所示:四邊形是菱形,,,,面積為,①菱形的邊長為,②,由①②兩式可得:,,,即該菱形的兩條對角線的長度之和為,故選C.【點睛】本題考查了菱形的性質(zhì),菱形的面積,勾股定理等,熟練掌握相關(guān)知識是解題的關(guān)鍵.2、C【解析】【分析】過A作AF垂直x軸,過B點作BE垂直與x軸,垂足分別為F,E,得出,可得出,再根據(jù)反比例函數(shù)的性質(zhì)得出兩個三角形的面積,繼而得出兩個三角形的相似比,再逐項判斷即可.【詳解】解:過A作AF垂直x軸,過B點作BE垂直與x軸,垂足分別為F,E,由題意可得出,繼而可得出頂點,分別在反比例函數(shù)()與()的圖象上∴∴∴∴A.,此選項錯誤,B.,此選項錯誤;C.,此選項正確;D.,此選項錯誤;故選:C.【點睛】本題考查的知識點是反比例函數(shù)的性質(zhì)以及解直角三角形,解此題的關(guān)鍵是利用反比例函數(shù)的性質(zhì)求出兩個三角形的相似比.3、C【分析】根據(jù)題意和勾股定理可得AB長,再根據(jù)菱形的四條邊都相等,即可求出菱形的周長.【詳解】∵點A,B的坐標分別為(﹣2,0),(0,﹣1),∴OA=2,OB=1,∴,∴菱形ABCD的周長等于4AB=4.故選:C.【點睛】此題主要考查了菱形的性質(zhì),勾股定理以及坐標與圖形的性質(zhì),得出AB的長是解題關(guān)鍵.4、C【解析】分析:根據(jù)直角三角形的性質(zhì)得出AE=CE=1,進而得出DE=3,利用勾股定理解答即可.詳解:∵在Rt△ABC中,∠ACB=90°,CE為AB邊上的中線,CE=1,∴AE=CE=1,∵AD=2,∴DE=3,∵CD為AB邊上的高,∴在Rt△CDE中,CD=,故選C.點睛:此題考查直角三角形的性質(zhì),關(guān)鍵是根據(jù)直角三角形的性質(zhì)得出AE=CE=1.5、B【分析】設(shè)這兩個數(shù)中較大的數(shù)為x,則較小的數(shù)為(x﹣1),根據(jù)兩數(shù)之積為1,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論.【詳解】解:設(shè)這兩個數(shù)中較大的數(shù)為x,則較小的數(shù)為(x﹣1),依題意,得:x(x﹣1)=1,解得:x1=12,x2=﹣11(不合題意,舍去).故選:B.【點睛】本題考查的知識點是一元二次方程的應(yīng)用,找準題目中的等量關(guān)系式是解此題的關(guān)鍵.6、B【分析】首先分析得到當點E旋轉(zhuǎn)至y軸正方向上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長.【詳解】如圖,當點E旋轉(zhuǎn)至y軸正方向上時DE最?。摺鰽BC是等邊三角形,D為BC的中點,∴AD⊥BC.∵AB=BC=2,∴AD=AB?sin∠B=.∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,1),∴OA=1.∴.故選B.7、B【分析】連接OE,OF,OG,根據(jù)切線性質(zhì)證四邊形ABCD為正方形,根據(jù)正方形性質(zhì)和切線長性質(zhì)可得DE=DF.【詳解】連接OE,OF,OG,
∵AB,AD,DE都與圓O相切,
∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,
∵四邊形ABCD為正方形,
∴AB=AD=11,∠A=90°,
∴∠A=∠AGO=∠AFO=90°,
∵OF=OG=5,
∴四邊形AFOG為正方形,
則DE=DF=11-5=6,
故選:B【點睛】考核知識點:切線和切線長定理.作輔助線,利用切線長性質(zhì)求解是關(guān)鍵.8、C【解析】由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.9、D【分析】由題意得,將所求式子化簡后,代入即可得.【詳解】由題意得:,即又代入可得:原式故選:D.【點睛】本題考查了長方形的周長和面積公式、多項式的因式分解、以及完全平方公式,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.10、A【分析】作BG⊥x軸于點G,DH⊥x軸于點H,根據(jù)位似圖形的概念得到△ABC∽△EDC,根據(jù)相似是三角形的性質(zhì)計算即可.【詳解】作BG⊥x軸于點G,DH⊥x軸于點H,則BG∥DH,∵△ABC和△EDC是以點C為位似中心的位似圖形,∴△ABC∽△EDC,∵△ABC和△EDC的周長之比為1:2,∴=,由題意得,CG=3,BG=1,∵BG∥DH,∴△BCG∽△DCH,∴===,即==,解得,CH=6,DH=2,∴OH=CH﹣OC=4,則點D的坐標為為(4,﹣2),故選:A.【點睛】本題考查的是位似變換的性質(zhì),正確理解位似與相似的關(guān)系,記憶關(guān)于原點位似的兩個圖形對應(yīng)點坐標之間的關(guān)系是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、﹣5<x<1【分析】先根據(jù)拋物線的對稱性得到A點坐標(1,0),由y=ax2+bx+c>0得函數(shù)值為正數(shù),即拋物線在x軸上方,然后找出對應(yīng)的自變量的取值范圍即可得到不等式ax2+bx+c>0的解集.【詳解】解:根據(jù)圖示知,拋物線y=ax2+bx+c圖象的對稱軸是x=﹣1,與x軸的一個交點坐標為(﹣5,0),根據(jù)拋物線的對稱性知,拋物線y=ax2+bx+c圖象與x軸的兩個交點關(guān)于直線x=﹣1對稱,即拋物線y=ax2+bx+c圖象與x軸的另一個交點與(﹣5,0)關(guān)于直線x=﹣1對稱,∴另一個交點的坐標為(1,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴拋物線y=ax2+bx+c的圖形在x軸上方,∴不等式ax2+bx+c>0的解集是﹣5<x<1.故答案為﹣5<x<1.【點睛】此題主要考查了二次函數(shù)與不等式,解答此題的關(guān)鍵是求出圖象與x軸的交點,然后由圖象找出當y>0時,自變量x的范圍,本題鍛煉了學(xué)生數(shù)形結(jié)合的思想方法.12、【分析】在兩個直角三角形中,都是知道已知角和對邊,根據(jù)正切函數(shù)求出鄰邊后,相加求和即可;【詳解】由已知可得,,CD=20,∵于點D,∴在中,,,∴,在中,,,∴,∴.故答案為.【點睛】本題主要考查了解直角三角形的應(yīng)用,準確理解和計算是解題的關(guān)鍵.13、1≤y<9【分析】根據(jù)二次函數(shù)的圖象和性質(zhì)求出拋物線在上的最大值和最小值即可.【詳解】∴拋物線開口向上∴當時,y有最小值,最小值為1當時,y有最大值,最小值為∴當時,的取值范圍是故答案為:.【點睛】本題主要考查二次函數(shù)在一定范圍內(nèi)的最大值和最小值,掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.14、.【分析】直接利用位似圖形的性質(zhì)進而分析得出答案.【詳解】解:∵以點為位似中心,將放大后得到,,∴.故答案為.【點睛】此題主要考查了位似變換,正確得出對應(yīng)邊的比值是解題關(guān)鍵.15、④⑥①②③⑤【分析】根據(jù)中心投影的性質(zhì),找到是燈光的光源即可判斷出中心投影;再利用平行光下的投影屬于平行投影可判斷出平行投影.【詳解】解:①②③⑤都是燈光下的投影,屬于中心投影;④因為太陽光屬于平行光線,所以日晷屬于平行投影;⑥中是平行光線下的投影,屬于平行投影,故答案為:④⑥;①②③⑤.【點睛】此題主要考查了中心投影和平行投影的性質(zhì),解題的關(guān)鍵是根據(jù)平行投影和中心投影的區(qū)別進行解答即可.16、cm【分析】設(shè)這個圓錐的底面圓半徑為rcm,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長和弧長公式得到,然后解方程即可.【詳解】解:設(shè)這個圓錐的底面圓半徑為rcm,
根據(jù)題意得解得:,即這個圓錐的底面圓半徑為cm故答案為:cm【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.17、2﹣2【分析】取BC中點G,連接HG,AG,根據(jù)直角三角形的性質(zhì)可得HG=CG=BG=BC=2,根據(jù)勾股定理可求AG=2,由三角形的三邊關(guān)系可得AH≥AG﹣HG,當點H在線段AG上時,可求AH的最小值.【詳解】解:如圖,取BC中點G,連接HG,AG,∵CH⊥DB,點G是BC中點∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即當點H在線段AG上時,AH最小值為2﹣2,故答案為:2﹣2【點睛】本題考查了動點問題,解決本題的關(guān)鍵是熟練掌握直角三角形中勾股定理關(guān)系式.18、.【分析】由勾股定理求出的長,再證明四邊形是矩形,可得,根據(jù)垂線段最短和三角形面積即可解決問題.【詳解】解:∵,且,,∴,∵,,∴,∴四邊形是矩形.如圖,連接AD,則,∴當時,的值最小,此時,的面積,∴,∴的最小值為;故答案為:.【點睛】本題考查了矩形的判定和性質(zhì)、勾股定理、三角形面積、垂線段最短等知識,解題的關(guān)鍵是熟練掌握基本知識,本題屬于中考??碱}型.三、解答題(共66分)19、(1)見解析;(2);(3)【分析】(1)由等角對等邊可得,再由對頂角相等推出,然后利用等角的余角相等即可得證;(2)在中,利用勾股定理可求出BD=10,然后由等角對等邊得到,進而求出BP=2,再利用推出,由垂直平分線推出,即可得到的值;(3)連接CG,先由勾股定理求出,由(2)的條件可推出BE=DG,再證明△ABE≌△CDG,從而求出,并推出,最后在中,即可求出的值.【詳解】(1)證明:,∵MN⊥AP∴∠GFE=90°∴∠BGN+∠GEF=90°又(2)在矩形ABCD中,∴在中,又∵在矩形ABCD中,∴∵MN垂直平分AP(3)如圖,連接CG,在中,在中,又∵在矩形ABCD中,在△ABE和△CDG中,∵AB=DC,∠ABE=∠CDG,BE=DG∴在中,【點睛】本題考查了矩形的性質(zhì)和等腰三角形的性質(zhì),全等三角形,相似三角形的判定和性質(zhì),以及三角函數(shù),熟練掌握矩形的性質(zhì)推出相似三角形與全等三角形是解題的關(guān)鍵.20、(1)200,64;(2)0.1;(3)全校學(xué)生中家庭藏書不少于76本的人數(shù)為660人.【分析】(1)根據(jù)類別C的人數(shù)和所占的百分比即可求出樣本容量,用樣本容量減去A,C,D所對應(yīng)的人數(shù)即可求出a的值;(2)用類別A所對應(yīng)的人數(shù)除以樣本容量即可求出抽到A類學(xué)生的概率;(3)用2000乘以藏書不少于76本的概率即可得出答案.【詳解】(1)調(diào)查的樣本容量為50÷25%=200(人),a=200﹣20﹣50﹣66=64(人),故答案為200,64;(2)剛好抽到A類學(xué)生的概率是20÷200=0.1,故答案為0.1;(3)全校學(xué)生中家庭藏書不少于76本的人數(shù):2000×=660(人).答:全校學(xué)生中家庭藏書不少于76本的人數(shù)為660人.【點睛】本題主要考查隨機事件的概率,用樣本估計總體等,能夠?qū)y(tǒng)計表和扇形統(tǒng)計圖結(jié)合是解題的關(guān)鍵.21、(1)見解析;(2).【分析】(1)根據(jù)已知條件畫出樹狀圖得出所有等情況數(shù)即可;(2)找出兩次取出至少有一次是B等品杯子的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:(1)根據(jù)題意畫樹狀圖如下:由圖可知,共有9中等可能情況數(shù);(2)∵共有9中等可能情況數(shù),其中兩次取出至少有一次是B等品杯子的有5種,∴兩次取出至少有一次是B等品杯子的概率是.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比。22、(1);(2)可能,的長為或;(3)當時,滿足條件的點的個數(shù)有個,當時,滿足條件的點的個數(shù)有個,當時,滿足條件的點的個數(shù)有個(此時點在的左側(cè)).【解析】(1)利用待定系數(shù)法,轉(zhuǎn)化為解方程組即可解決問題.(2)可能分三種情形①當時,②當時,③當時,分別求解即可.(3)如圖2中,連接,當點在線段的右側(cè)時,作于,連接.設(shè),構(gòu)建二次函數(shù)求出的面積的最大值,再根據(jù)對稱性即可解決問題.【詳解】(1)由題意:解得拋物線的解析式為,頂點坐標.(2)可能.如圖1,①當時,,此時與重合,與條件矛盾,不成立.②當時,又,,③當時,,,答:當?shù)拈L為或時,為等腰三角形.(3)如圖2中,連接,當點在線段的右側(cè)時,作于,連接.設(shè)則時,的面積的最大值為,當點在的右側(cè)時,的最大值,觀察圖象可知:當時,滿足條件的點的個數(shù)有個,當時,滿足條件的點的個數(shù)有個,當時,滿足條件的點的個數(shù)有個(此時點在的左側(cè)).【點睛】本題屬于二次函數(shù)綜合題,考查了待定系數(shù)法,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考壓軸題.23、(1)證明見解析;(2)1.【分析】(1)連接CP,根據(jù)等腰三角形的性質(zhì)得到∠PAC=∠PCA,由角平分線的定義得到∠PAC=∠EAC,等量代換得到∠PCA=∠EAC,推出PC∥AE,于是得到結(jié)論;(2)連接PC,根據(jù)角平分線的定義得到∠BAC=∠OAC,根據(jù)等腰三角形的性質(zhì)得到∠PCA=∠PAC,等量代換得到∠BAC=∠ACP,推出PC∥AB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)證明:連接,∵,∴,∵平分,∴,∴,∴,∵,∴,即是的切線.(2)連接,∵平分,∴,∵,∴,∴,∴,∴,∴,∵,,∴,,∴,∴,∴,∴的半徑為1【點睛】本題考查了角平分線的定義,平行線的判定和性質(zhì),切線的判定,相似三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.24、(1);(2)當時,的值最大,最大值為;(3)、、或【分析】(1)設(shè)拋物線的解析式為,代入點的坐標即可求解;(2)連接,可得點,根據(jù)一次函數(shù)得出點、的坐標,然后利用三角形面積公式得出的表達式,利用二次函數(shù)的表達式即可求解;(3)①當為直角邊時,過點和點做垂線交軸于點和點,過點的垂線交軸于點,得出,再利用等腰直角三角形和坐標即可求解;②當為斜邊時,設(shè)的中點為,以為圓心為直徑做圓于軸于點和點,過點作軸,先得出和的值,再求出的值即可求解.【詳解】解:(1)一次函數(shù)與軸交于點,則的坐標為.拋物線的頂點為,設(shè)拋物線解析式為.拋物線經(jīng)過點,..拋物線解析式為;(2)解法一:連接.點為第一象限拋物線上一動點.點的橫坐標為,.一次函數(shù)與軸交于點.則,的坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大米專用冰箱產(chǎn)品供應(yīng)鏈分析
- 帶有時鐘的收音機產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 醫(yī)療影像技術(shù)行業(yè)相關(guān)項目經(jīng)營管理報告
- 樂器修理或維護行業(yè)營銷策略方案
- 美容霜項目營銷計劃書
- 幼兒園行業(yè)經(jīng)營分析報告
- 不動產(chǎn)出租服務(wù)行業(yè)營銷策略方案
- 含藥物的護膚液產(chǎn)品供應(yīng)鏈分析
- 礦物絕緣電纜產(chǎn)品供應(yīng)鏈分析
- 云計算法務(wù)服務(wù)行業(yè)營銷策略方案
- 文化廣場規(guī)劃設(shè)計方案說明書
- 2012年數(shù)學(xué)建模機器人避障問題
- 規(guī)?;B(yǎng)豬場的科學(xué)用水管理
- 日本泡沫經(jīng)濟專題講座PPT
- 電梯故障狀態(tài)救援操作規(guī)程
- 車間現(xiàn)場作業(yè)指導(dǎo)書SOP模板樣本
- 郎酒經(jīng)銷商大全國內(nèi)各大城市代理商經(jīng)銷商
- 低壓開關(guān)柜驗收規(guī)范
- 四年級體育教學(xué)計劃及進度表[中小教育]
- 六年級英語總復(fù)習名詞專項練習
- 政府采購工作自查報告四篇
評論
0/150
提交評論