版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,是的弦,半徑于點,且的長是()A. B. C. D.2.設,,是拋物線上的三點,則,,的大小關系為()A. B. C. D.3.一元二次方程x2﹣3x﹣4=0的一次項系數(shù)是()A.1 B.﹣3 C.3 D.﹣44.邊長分別為6,8,10的三角形的內切圓半徑與外接圓半徑的比為()A.1:5 B.4:5 C.2:10 D.2:55.已知一元二次方程,則該方程根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.兩個根都是自然數(shù) D.無實數(shù)根6.已知正多邊形的一個內角是135°,則這個正多邊形的邊數(shù)是()A.3 B.4 C.6 D.87.在中,是邊上的點,,則的長為()A. B. C. D.8.如圖,在平面直角坐標系中,直線AB與x軸,y軸分別交于A,B,與反比例函數(shù)(k>0)在第一象限的圖象交于點E,F(xiàn),過點E作EM⊥y軸于M,過點F作FN⊥x軸于N,直線EM與FN交于點C,若,則△OEF與△CEF的面積之比是()A.2:1 B.3:1 C.2:3 D.3:29.方程x2﹣6x+5=0的兩個根之和為()A.﹣6 B.6 C.﹣5 D.510.從1到9這9個自然數(shù)中任取一個,既是2的倍數(shù),又是3的倍數(shù)的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在中,是斜邊的垂直平分線,分別交于點,若,則______.12.菱形ABCD中,若周長是20cm,對角線AC=6cm,則對角線BD=_____cm.13.如圖,王師傅在一塊正方形鋼板上截取了寬的矩形鋼條,剩下的陰影部分的面積是,則原來這塊正方形鋼板的邊長是__________cm.14.如圖,已知圓錐的底面半徑為3,高為4,則該圓錐的側面積為______.15.從這九個自然數(shù)中,任取一個數(shù)是偶數(shù)的概率是____.16.計算:=______.17.某校數(shù)學興趣小組為測量學校旗桿AC的高度,在點F處豎立一根長為1.5米的標桿DF,如圖所示,量出DF的影子EF的長度為1米,再量出旗桿AC的影子BC的長度為6米,那么旗桿AC的高度為_______米.18.一家鞋店對上一周某品牌女鞋的銷量統(tǒng)計如下:尺碼(厘米)2222.52323.52424.525銷量(雙)12511731該店決定本周進貨時,多進一些尺碼為23.5厘米的鞋,影響鞋店決策的統(tǒng)計量是___________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,拋物線y=﹣x2+4x+5與y軸交于點A,與x軸的正半軸交于點C.(1)求直線AC解析式;(2)過點A作AD平行于x軸,交拋物線于點D,點F為拋物線上的一點(點F在AD上方),作EF平行于y軸交AC于點E,當四邊形AFDE的面積最大時?求點F的坐標,并求出最大面積;(3)若動點P先從(2)中的點F出發(fā)沿適當?shù)穆窂竭\動到拋物線對稱軸上點M處,再沿垂直于y軸的方向運動到y(tǒng)軸上的點N處,然后沿適當?shù)穆窂竭\動到點C停止,當動點P的運動路徑最短時,求點N的坐標,并求最短路徑長.20.(6分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).(1)請畫出△ABC向左平移5個單位長度后得到的△ABC;(2)請畫出△ABC關于原點對稱的△ABC;(3)在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.21.(6分)已知關于x的一元二次方程有兩個實數(shù)根x1,x1.(1)求實數(shù)k的取值范圍;(1)是否存在實數(shù)k使得成立?若存在,請求出k的值;若不存在,請說明理由.22.(8分)如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B(4,m)兩點,拋物線y=ax2+bx+c交y軸于點C(0,﹣),交x軸正半軸于D點,拋物線的頂點為M.(1)求拋物線的解析式;(2)設點P為直線AB下方的拋物線上一動點,當△PAB的面積最大時,求△PAB的面積及點P的坐標;(3)若點Q為x軸上一動點,點N在拋物線上且位于其對稱軸右側,當△QMN與△MAD相似時,求N點的坐標.23.(8分)閱讀下列材料,關于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……(1)請觀察上述方程與解的特征,比較關于x的方程x+=c+(a≠0)與它們的關系猜想它的解是什么,并利用“方程的解”的概念進行驗證.(2)可以直接利用(1)的結論,解關于x的方程:x+=a+.24.(8分)某公司今年1月份的生產成本是400萬元,由于改進技術,生產成本逐月下降,3月份的生產成本是361萬元.假設該公司2、3、4月每個月生產成本的下降率都相同.(1)求每個月生產成本的下降率;(2)請你預測4月份該公司的生產成本.25.(10分)如圖,網格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉中心,分別畫出把順時針旋轉,后的,;(2)利用變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值.26.(10分)如圖,在中,點,分別在,上,,,.求四邊形的面積.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】利用勾股定理和垂徑定理即可求解.【詳解】∵,∴AD=4cm在Rt△AOD中,OA2=OD2+AD2,∴25=(5?DC)2+16,∴DC=2cm.故選:C.【點睛】主要考查了垂徑定理的運用.垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對的兩條?。獯祟愵}一般要把半徑、弦心距、弦的一半構建在一個直角三角形里,運用勾股定理求解.2、A【分析】根據(jù)二次函數(shù)的性質得到拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,然后根據(jù)三個點離對稱軸的遠近判斷函數(shù)值的大?。驹斀狻拷猓骸邟佄锞€y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,而A(2,y1)離直線x=﹣1的距離最遠,C(﹣2,y3)點離直線x=1最近,∴.故選A.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質.3、B【解析】根據(jù)一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0),在一般形式中bx叫一次項,系數(shù)是b,可直接得到答案.【詳解】解:一次項是:未知數(shù)次數(shù)是1的項,故一次項是﹣3x,系數(shù)是:﹣3,故選:B.【點睛】此題考查的是求一元一次方程一般式中一次項系數(shù),掌握一元一次方程的一般形式和一次項系數(shù)的定義是解決此題的關鍵.4、D【分析】由面積法求內切圓半徑,通過直角三角形外接圓半徑為斜邊一半可求外接圓半徑,則問題可求.【詳解】解:∵62+82=102,∴此三角形為直角三角形,∵直角三角形外心在斜邊中點上,∴外接圓半徑為5,設該三角形內接圓半徑為r,∴由面積法×6×8=×(6+8+10)r,解得r=2,三角形的內切圓半徑與外接圓半徑的比為2:5,故選D.【點睛】本題主要考查了直角三角形內切圓和外接圓半徑的有關性質和計算方法,解決本題的關鍵是要熟練掌握面積計算方法.5、A【詳解】解:∵a=2,b=-5,c=3,∴△=b2-4ac=(-5)2-4×2×3=1>0,∴方程有兩個不相等的實數(shù)根.故選A.【點睛】本題考查根的判別式,熟記公式正確計算是解題關鍵,難度不大.6、D【分析】根據(jù)正多邊形的一個內角是135°,則知該正多邊形的一個外角為45°,再根據(jù)多邊形的外角之和為360°,即可求出正多邊形的邊數(shù).【詳解】解:∵正多邊形的一個內角是135°,∴該正多邊形的一個外角為45°,∵多邊形的外角之和為360°,∴邊數(shù)=,∴這個正多邊形的邊數(shù)是1.故選:D.【點睛】本題考查了正多邊形的內角和與外角和的知識,知道正多邊形的外角之和為360°是解題關鍵.7、C【分析】先利用比例性質得到AD:AB=3:4,再證明△ADE∽△ABC,然后利用相似比可計算出AC的長.【詳解】解:解:∵AD=9,BD=3,
∴AD:AB=9:12=3:4,
∵DE∥BC,
∴△ADE∽△ABC,∴=,∵AE=6,∴AC=8,故選C.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形;在利用相似三角形的性質時主要利用相似比計算線段的長.8、A【分析】根據(jù)E,F(xiàn)都在反比例函數(shù)的圖象上設出E,F(xiàn)的坐標,進而分別得出△CEF的面積以及△OEF的面積,然后即可得出答案.【詳解】解:設△CEF的面積為S1,△OEF的面積為S2,過點F作FG⊥BO于點G,EH⊥AO于點H,∴GF∥MC,∴=,∵ME?EH=FN?GF,∴==,設E點坐標為:(x,),則F點坐標為:(3x,),∴S△CEF=(3x﹣x)(﹣)=,∵S△OEF=S梯形EHNF+S△EOH﹣S△FON=S梯形EHNF=(+)(3x﹣x)=k∴==.故選:A.【點睛】此題主要考查了反比例函數(shù)的綜合應用以及三角形面積求法,根據(jù)已知表示出E,F(xiàn)的點坐標是解題關鍵,有一定難度,要求同學們能將所學的知識融會貫通.9、B【分析】根據(jù)根與系數(shù)的關系得出方程的兩根之和為,即可得出選項.【詳解】解:方程x2﹣6x+5=0的兩個根之和為6,故選:B.【點睛】本題考查了根與系數(shù)的關系,解決問題的關鍵是熟練正確理解題意,熟練掌握一元二次方程根與系數(shù)的關系.10、A【分析】從1到9這9個自然數(shù)中,既是2的倍數(shù),又是3的倍數(shù)只有6一個,所以既是2的倍數(shù),又是3的倍數(shù)的概率是九分之一.【詳解】解:∵既是2的倍數(shù),又是3的倍數(shù)只有6一個,∴P(既是2的倍數(shù),又是3的倍數(shù))=.故選:A.【點睛】本題考查了用列舉法求概率,屬于簡單題,熟悉概率的計算公式是解題關鍵.二、填空題(每小題3分,共24分)11、2【分析】連接BF,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AF=BF,再根據(jù)等邊對等角的性質求出∠ABF=∠A,然后根據(jù)三角形的內角和定理求出∠CBF,再根據(jù)三角函數(shù)的定義即可求出CF.【詳解】如圖,連接BF,
∵EF是AB的垂直平分線,
∴AF=BF,
∴,,在△BCF中,∴,∴.故答案為:.【點睛】本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質,三角函數(shù)的定義,熟記性質并作出輔助線是解題的關鍵.12、1【分析】先根據(jù)周長求出菱形的邊長,再根據(jù)菱形的對角線互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【詳解】解:如圖,∵菱形ABCD的周長是20cm,對角線AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案為:1.【點睛】本題考查了菱形的性質,屬于簡單題,熟悉菱形對角線互相垂直且平分是解題關鍵.13、【分析】設原來正方形鋼板的邊長為xcm,根據(jù)題意可知陰影部分的矩形的長和寬分別為xcm,(x-4)cm,然后根據(jù)題意列出方程求解即可.【詳解】解:設原來正方形鋼板的邊長為xcm,根據(jù)題意可知陰影部分的矩形的長和寬分別為xcm,(x-4)cm,根據(jù)題意可得:整理得:解得:(負值舍去)故答案為:12.【點睛】本題考查一元二次方程的應用,根據(jù)題意列出陰影部分的面積的方程是本題的解題關鍵.14、【分析】根據(jù)圓錐的底面半徑為3,高為4可得圓錐的母線長,根據(jù)圓錐的側面積S=即可得答案.【詳解】∵圓錐的底面半徑為3,高為4,∴圓錐的母線長為=5,∴該圓錐的側面積為:π×3×5=15π,故答案為:15π【點睛】本題考查求圓錐的側面積,如果圓錐的底面半徑為r,母線長為l,則圓錐的側面積S=;熟練掌握圓錐的側面積公式是解題關鍵.15、【分析】由從1到9這九個自然數(shù)中任取一個,是偶數(shù)的有4種情況,直接利用概率公式求解即可求得答案.【詳解】解:這九個自然數(shù)中任取一個有9種情況,其中是偶數(shù)的有4種情況,從1到9這九個自然數(shù)中任取一個,是偶數(shù)的概率是:.故答案為:.【點睛】此題考查了概率公式的應用.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.16、-1.【分析】由題意根據(jù)負整數(shù)指數(shù)冪和零指數(shù)冪的定義求解即可.【詳解】解:=1﹣2=﹣1.故答案為:﹣1.【點睛】本題考查負整數(shù)指數(shù)冪和零指數(shù)冪的定義,熟練掌握實數(shù)的運算法則以及負整數(shù)指數(shù)冪和零指數(shù)冪的運算方法是解題的關鍵.17、2【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經過物體頂部的太陽光線三者構成的兩個直角三角形相似.根據(jù)相似三角形的對應邊的比相等,即可求解.【詳解】解:∵DE∥AB,DF∥AC,
∴△DEF∽△ABC,
∴,
即,
∴AC=6×1.5=2米.
故答案為:2.【點睛】本題考查了相似三角形在測量高度時的應用,解題時關鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.18、眾數(shù)【解析】平均數(shù)、中位數(shù)、眾數(shù)是描述一組數(shù)據(jù)集中程度的統(tǒng)計量;方差、標準差是描述一組數(shù)據(jù)離散程度的統(tǒng)計量.銷量大的尺碼就是這組數(shù)據(jù)的眾數(shù).【詳解】由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故應最關心這組數(shù)據(jù)中的眾數(shù).故答案為眾數(shù).【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.熟練掌握均數(shù)、中位數(shù)、眾數(shù)、方差的意義是解答本題的關鍵.三、解答題(共66分)19、(1)y=﹣x+5;(2)點F(,);四邊形AFDE的面積的最大值為;(3)點N(0,),點P的運動路徑最短距離=2+.【分析】(1)先求出點A,點C坐標,用待定系數(shù)法可求解析式;(2)先求出點D坐標,設點F(x,﹣x2+4x+5),則點E坐標為(x,﹣x+5),即可求EF=﹣x2+5x,可求四邊形AFDE的面積,由二次函數(shù)的性質可求解;(3)由動點P的運動路徑=FM+MN+NC=GM+2+MH,則當點G,點M,點H三點共線時,動點P的運動路徑最小,由兩點距離公式可求解.【詳解】解:(1)∵拋物線y=﹣x2+4x+5與y軸交于點A,與x軸的正半軸交于點C.∴當x=0時,y=5,則點A(0,5)當y=0時,0=﹣x2+4x+5,∴x1=5,x2=﹣1,∴點B(﹣1,0),點C(5,0)設直線AC解析式為:y=kx+b,∴解得:∴直線AC解析式為:y=﹣x+5,(2)∵過點A作AD平行于x軸,∴點D縱坐標為5,∴5=﹣x2+4x+5,∴x1=0,x2=4,∴點D(4,5),∴AD=4設點F(x,﹣x2+4x+5),則點E坐標為(x,﹣x+5)∴EF=﹣x2+4x+5﹣(﹣x+5)=﹣x2+5x,∵四邊形AFDE的面積=AD×EF=2EF=﹣2x2+10x=﹣2(x﹣)2+∴當x=時,四邊形AFDE的面積的最大值為,∴點F(,);(3)∵拋物線y=﹣x2+4x+5=﹣(x﹣2)2+9,∴對稱軸為x=2,∴MN=2,如圖,將點C向右平移2個單位到點H(7,0),過點F作對稱軸x=2的對稱點G(,),連接GH,交直線x=2于點M,∵MN∥CH,MN=CH=2,∴四邊形MNCH是平行四邊形,∴NC=MH,∵動點P的運動路徑=FM+MN+NC=GM+2+MH,∴當點G,點M,點H三點共線時,動點P的運動路徑最小,∴動點P的運動路徑最短距離=2+=2+,設直線GH解析式為:y=mx+n,∴,解得,∴直線GH解析式為:y=﹣x+,當x=2時,y=,∴點N(0,).【點睛】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求解析式,函數(shù)極值的確定方法,兩點距離公式等知識,解題的關鍵是學會利用對稱解決最短問題.20、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標為:(2,0)【分析】(1)按題目的要求平移就可以了關于原點對稱的點的坐標變化是:橫、縱坐標都變?yōu)橄喾磾?shù),找到對應點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉為了已知直線與直線一側的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應用21、(1)(1)不存在【分析】(1)由題意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通過解該不等式即可求得k的取值范圍;(1)假設存在實數(shù)k使得x1·x1-x11-x11≥0成立.由根與系數(shù)的關系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0轉化為3x1·x1-(x1+x1)1≥0的形式,通過解不等式可以求得k的值.【詳解】(1)∵原方程有兩個實數(shù)根,∴△≥0即[﹣(1k+1)]1﹣4(k1+1k)≥0,∴4k1+4k+1﹣4k1﹣8k≥0,∴1﹣4k≥0,∴k≤,∴當k≤時,原方程有兩個實數(shù)根;(1)假設存在實數(shù)k使得x1·x1-x11-x11≥0成立,∵x1,x1是原方程的兩根,∴x1+x1=1k+1,x1·x1=k1+1k,由x1·x1-x11-x11≥0,得3x1·x1-(x1+x1)1≥0∴3(k1+1k)﹣(1k+1)1≥0,整理得:﹣(k﹣1)1≥0,∴只有當k=1時,上式才能成立;又∵由(1)知k≤,∴不存在實數(shù)k使得x1·x1-x11-x11≥0成立.22、(1);(2),P(,);(3)N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).【分析】(1)將點代入,求出,將點代入,即可求函數(shù)解析式;(2)如圖,過作軸,交于,求出的解析式,設,表示點坐標,表示長度,利用,建立二次函數(shù)模型,利用二次函數(shù)的性質求最值即可,(3)可證明△MAD是等腰直角三角形,由△QMN與△MAD相似,則△QMN是等腰直角三角形,設①當MQ⊥QN時,N(3,0);②當QN⊥MN時,過點N作NR⊥x軸,過點M作MS⊥RN交于點S,由(AAS),建立方程求解;③當QN⊥MQ時,過點Q作x軸的垂線,過點N作NS∥x軸,過點作R∥x軸,與過M點的垂線分別交于點S、R;可證△MQR≌△QNS(AAS),建立方程求解;④當MN⊥NQ時,過點M作MR⊥x軸,過點Q作QS⊥x軸,過點N作x軸的平行線,與兩垂線交于點R、S;可證△MNR≌△NQS(AAS),建立方程求解.【詳解】解:(1)將點代入,∴,將點代入,解得:,∴函數(shù)解析式為;(2)如圖,過作軸,交于,設為,因為:所以:,解得:,所以直線AB為:,設,則,所以:,所以:,當,,此時:.(3)∵,∴,∴△MAD是等腰直角三角形.∵△QMN與△MAD相似,∴△QMN是等腰直角三角形,設①如圖1,當MQ⊥QN時,此時與重合,N(3,0);②如圖2,當QN⊥MN時,過點N作NR⊥x軸于,過點M作MS⊥RN交于點S.∵QN=MN,∠QNM=90°,∴(AAS),∴,∴,,∴,∴;③如圖3,當QN⊥MQ時,過點Q作x軸的垂線,過點N作NS∥x軸,過點作R∥x軸,與過點的垂線分別交于點S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),,,∴,∴t=5,(舍去負根)∴N(5,6);④如圖4,當MN⊥NQ時,過點M作MR⊥x軸,過點Q作QS⊥x軸,過點N作x軸的平行線,與兩垂線交于點R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴,∴.,∴,∴;綜上所述:或或N(5,6)或.【點睛】本題考查二次函數(shù)的綜合;熟練掌握二次函數(shù)的圖象及性質,數(shù)形結合解題是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國鍋爐自控設備市場調查研究報告
- 2025年度智能農業(yè)設備運維與數(shù)據(jù)分析服務合同3篇
- 2024水電站施工臨時設施租賃合同
- 二零二五年度何菡與李明離婚協(xié)議及共同債務清算合同3篇
- 2024年股權轉讓及債務處理專項合同版B版
- 2024版農產品電商平臺建設與運營合同
- 2024年中國試劑鹽酸市場調查研究報告
- 2024年中國西蘭花市場調查研究報告
- 2024年中國蜂巢布沐浴用品市場調查研究報告
- 2024年中國船尾轉動彎管市場調查研究報告
- 礦業(yè)公司規(guī)章制度匯編
- 《高低壓配電室施工工藝標準》
- 2024年太陽能光伏組件高空清洗作業(yè)人員安全保障合同3篇
- 大學學業(yè)規(guī)劃講座
- 《國家課程建設》課件
- 四川省南充市2023-2024學年高一上學期期末考試 歷史 含解析
- 新教科版小學1-6年級科學需做實驗目錄
- 2024年貴州貴陽市貴安新區(qū)產業(yè)發(fā)展控股集團有限公司招聘筆試參考題庫含答案解析
- 美國RAZ分級讀物目錄整理
- 地方課程六年級上冊
- 中科院大連化物所模板PPT課件
評論
0/150
提交評論