版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古洲里市第九中學2023-2024學年中考數學最后沖刺濃縮精華卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,這是根據某班40名同學一周的體育鍛煉情況繪制的條形統計圖,根據統計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數、中位數分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.52.下列計算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x33.如圖在△ABC中,AC=BC,過點C作CD⊥AB,垂足為點D,過D作DE∥BC交AC于點E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.4.如圖,已知直線l1:y=﹣2x+4與直線l2:y=kx+b(k≠0)在第一象限交于點M.若直線l2與x軸的交點為A(﹣2,0),則k的取值范圍是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<25.的化簡結果為A.3 B. C. D.96.如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長為()A.1 B.2 C.3 D.47.已知:如圖,在扇形中,,半徑,將扇形沿過點的直線折疊,點恰好落在弧上的點處,折痕交于點,則弧的長為()A. B. C. D.8.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點G、D,若△AGC的周長為31cm,AB=20cm,則△ABC的周長為()A.31cm B.41cm C.51cm D.61cm9.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間10.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.11.如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB,AD=2,BD=6,則邊AC的長為()A.2 B.4 C.6 D.812.下列命題中,正確的是()A.菱形的對角線相等B.平行四邊形既是軸對稱圖形,又是中心對稱圖形C.正方形的對角線不能相等D.正方形的對角線相等且互相垂直二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點,則下列結論:①△ADF≌△FEC;②四邊形ADEF為菱形;③.其中正確的結論是____________.(填寫所有正確結論的序號)14.下列對于隨機事件的概率的描述:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是0.2;③測試某射擊運動員在同一條件下的成績,隨著射擊次數的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85其中合理的有______(只填寫序號).15.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點H,如果AH=BC,那么sin∠BAC的值是____.16.如圖,在等腰中,,點在以斜邊為直徑的半圓上,為的中點.當點沿半圓從點運動至點時,點運動的路徑長是________.17.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.18.如圖,在平面直角坐標系中,經過點A的雙曲線y=(x>0)同時經過點B,且點A在點B的左側,點A的橫坐標為1,∠AOB=∠OBA=45°,則k的值為_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某手機經銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進3部甲型號手機和2部乙型號手機,共需要資金4600元求甲、乙型號手機每部進價為多少元?該店計劃購進甲、乙兩種型號的手機銷售,預計用不多于1.8萬元且不少于1.74萬元的資金購進這兩部手機共20臺,請問有幾種進貨方案?請寫出進貨方案售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1280元.為了促銷,公司決定每售出一臺乙型號手機,返還顧客現金m元,而甲型號手機售價不變,要使(2)中所有方案獲利相同,求m的值20.(6分)﹣(﹣1)2018+﹣()﹣121.(6分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數;甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;22.(8分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經過B、M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.(1)判斷AE與⊙O的位置關系,并說明理由;(2)若BC=6,AC=4CE時,求⊙O的半徑.23.(8分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.求證:△AEF≌△DEB;證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面積.24.(10分)某工廠計劃生產A、B兩種產品共60件,需購買甲、乙兩種材料.生產一件A產品需甲種材料4千克,乙種材料1千克;生產一件B產品需甲、乙兩種材料各3千克.經測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.(1)甲、乙兩種材料每千克分別是多少元?(2)現工廠用于購買甲、乙兩種材料的資金不能超過10000元,且生產B產品要超過38件,問有哪幾種符合條件的生產方案?(3)在(2)的條件下,若生產一件A產品需加工費40元,若生產一件B產品需加工費50元,應選擇哪種生產方案,才能使生產這批產品的成本最低?請直接寫出方案.25.(10分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結果保留根號形式)26.(12分)我國古代數學著作《增刪算法統宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.27.(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉過程中,當∠OAG′是直角時,求α的度數;②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據中位數、眾數的概念分別求得這組數據的中位數、眾數.【詳解】解:眾數是一組數據中出現次數最多的數,即8;而將這組數據從小到大的順序排列后,處于20,21兩個數的平均數,由中位數的定義可知,這組數據的中位數是9.故選A.【點睛】考查了中位數、眾數的概念.本題為統計題,考查眾數與中位數的意義,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會錯誤地將這組數據最中間的那個數當作中位數.2、B【解析】分析:直接利用合并同類項法則以及同底數冪的乘除運算法則和積的乘方運算法則分別計算得出答案.詳解:A、不是同類項,無法計算,故此選項錯誤;B、正確;C、故此選項錯誤;D、故此選項錯誤;故選:B.點睛:此題主要考查了合并同類項以及同底數冪的乘除運算和積的乘方運算,正確掌握運算法則是解題關鍵.3、A【解析】
由等腰三角形三線合一的性質得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據正弦函數的概念求解可得.【詳解】∵△ABC中,AC=BC,過點C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【點睛】本題主要考查解直角三角形,解題的關鍵是熟練掌握等腰三角形三線合一的性質和平行線的性質及直角三角形的性質等知識點.4、D【解析】
解:∵直線l1與x軸的交點為A(﹣1,0),∴﹣1k+b=0,∴,解得:.∵直線l1:y=﹣1x+4與直線l1:y=kx+b(k≠0)的交點在第一象限,∴,解得0<k<1.故選D.【點睛】兩條直線相交或平行問題;一次函數圖象上點的坐標特征.5、A【解析】試題分析:根據二次根式的計算化簡可得:.故選A.考點:二次根式的化簡6、A【解析】試題分析:由角平分線和線段垂直平分線的性質可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考點:線段垂直平分線的性質7、D【解析】
如圖,連接OD.根據折疊的性質、圓的性質推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.
根據折疊的性質知,OB=DB.
又∵OD=OB,
∴OD=OB=DB,即△ODB是等邊三角形,
∴∠DOB=60°.
∵∠AOB=110°,
∴∠AOD=∠AOB-∠DOB=50°,
∴的長為=5π.
故選D.【點睛】本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.所以由折疊的性質推知△ODB是等邊三角形是解答此題的關鍵之處.8、C【解析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長=AC+BC+AB=51cm,故選C.9、A【解析】
直接利用已知無理數得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數大小,正確得出的取值范圍是解題關鍵.10、B【解析】
解:由折疊的性質可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質.11、B【解析】
證明△ADC∽△ACB,根據相似三角形的性質可推導得出AC2=AD?AB,由此即可解決問題.【詳解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=4,故選B.【點睛】本題考查相似三角形的判定和性質、解題的關鍵是正確尋找相似三角形解決問題.12、D【解析】
根據菱形,平行四邊形,正方形的性質定理判斷即可.【詳解】A.菱形的對角線不一定相等,A錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,B錯誤;C.正方形的對角線相等,C錯誤;D.正方形的對角線相等且互相垂直,D正確;故選:D.【點睛】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①②③【解析】
①根據三角形的中位線定理可得出AD=FE、AF=FC、DF=EC,進而可證出△ADF≌△FEC(SSS),結論①正確;②根據三角形中位線定理可得出EF∥AB、EF=AD,進而可證出四邊形ADEF為平行四邊形,由AB=AC結合D、F分別為AB、AC的中點可得出AD=AF,進而可得出四邊形ADEF為菱形,結論②正確;③根據三角形中位線定理可得出DF∥BC、DF=BC,進而可得出△ADF∽△ABC,再利用相似三角形的性質可得出,結論③正確.此題得解.【詳解】解:①∵D、E、F分別為AB、BC、AC的中點,∴DE、DF、EF為△ABC的中位線,∴AD=AB=FE,AF=AC=FC,DF=BC=EC.在△ADF和△FEC中,,∴△ADF≌△FEC(SSS),結論①正確;②∵E、F分別為BC、AC的中點,∴EF為△ABC的中位線,∴EF∥AB,EF=AB=AD,∴四邊形ADEF為平行四邊形.∵AB=AC,D、F分別為AB、AC的中點,∴AD=AF,∴四邊形ADEF為菱形,結論②正確;③∵D、F分別為AB、AC的中點,∴DF為△ABC的中位線,∴DF∥BC,DF=BC,∴△ADF∽△ABC,∴,結論③正確.故答案為①②③.【點睛】本題考查了菱形的判定與性質、全等三角形的判定與性質、相似三角形的判定與性質以及三角形中位線定理,逐一分析三條結論的正誤是解題的關鍵.14、②③【解析】
大量反復試驗下頻率穩(wěn)定值即概率.注意隨機事件發(fā)生的概率在0和1之間.根據事件的類型及概率的意義找到正確選項即可.【詳解】解:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,大約有50次“正面朝上”,此結論錯誤;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是,此結論正確;③測試某射擊運動員在同一條件下的成績,隨著射擊次數的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85,此結論正確;故答案為:②③.【點睛】本題考查了概率的意義,解題的關鍵在于掌握計算公式.15、【解析】
過點B作BD⊥AC于D,設AH=BC=2x,根據等腰三角形三線合一的性質可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據三角形的面積列方程求出BD,然后根據銳角的正弦=對邊:斜邊求解即可.【詳解】如圖,過點B作BD⊥AC于D,設AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.16、π【解析】
取的中點,取的中點,連接,,,則,故的軌跡為以為圓心,為半徑的半圓弧,根據弧長公式即可得軌跡長.【詳解】解:如圖,取的中點,取的中點,連接,,,∵在等腰中,,點在以斜邊為直徑的半圓上,∴,∵為的中位線,∴,∴當點沿半圓從點運動至點時,點的軌跡為以為圓心,為半徑的半圓弧,∴弧長,故答案為:.【點睛】本題考查了點的軌跡與等腰三角形的性質.解決動點問題的關鍵是在運動中,把握不變的等量關系(或函數關系),通過固定的等量關系(或函數關系),解決動點的軌跡或坐標問題.17、3【解析】∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案為:3.18、【解析】
分析:過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定與性質得出OA=BA,∠OAB=90°,證出∠AOM=∠BAN,由AAS證明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)?(k﹣1)=k,解方程即可.詳解:如圖所示,過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵雙曲線y=(x>0)經過點B,∴(1+k)?(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(負值已舍去),故答案為.點睛:本題考查了反比例函數圖象上點的坐標特征,坐標與圖形的性質,全等三角形的判定與性質,等腰三角形的判定與性質等知識.解決問題的關鍵是作輔助線構造全等三角形.【詳解】請在此輸入詳解!三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)甲種型號手機每部進價為1000元,乙種型號手機每部進價為800元;(2)共有四種方案;(3)當m=80時,w始終等于8000,取值與a無關【解析】
(1)設甲種型號手機每部進價為x元,乙種型號手機每部進價為y元根據題意列方程組求出x、y的值即可;(2)設購進甲種型號手機a部,這購進乙種型號手機(20-a)部,根據題意列不等式組求出a的取值范圍,根據a為整數求出a的值即可明確方案(3)利用利潤=單個利潤數量,用a表示出利潤W,當利潤與a無關時,(2)中的方案利潤相同,求出m值即可;【詳解】(1)設甲種型號手機每部進價為x元,乙種型號手機每部進價為y元,,解得,(2)設購進甲種型號手機a部,這購進乙種型號手機(20-a)部,17400≤1000a+800(20-a)≤18000,解得7≤a≤10,∵a為自然數,∴有a為7、8、9、10共四種方案,(3)甲種型號手機每部利潤為1000×40%=400,w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,當m=80時,w始終等于8000,取值與a無關.【點睛】本題考查了列二元一次方程組解實際問題的運用,根據題意找出等量關系列出方程是解題關鍵.20、-1.【解析】
直接利用負指數冪的性質以及算術平方根的性質分別化簡得出答案.【詳解】原式=﹣1+1﹣3=﹣1.【點睛】本題主要考查了實數運算,正確化簡各數是解題的關鍵.21、(1)1;(2)【解析】
(1)設口袋中黃球的個數為x個,根據從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設口袋中黃球的個數為個,根據題意得:解得:=1經檢驗:=1是原分式方程的解∴口袋中黃球的個數為1個(2)畫樹狀圖得:∵共有12種等可能的結果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.22、(1)AE與⊙O相切.理由見解析.(2)2.1【解析】
(1)連接OM,則OM=OB,利用平行的判定和性質得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質和切線的判定即可得證;(2)設⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質和解直角三角形的有關知識得到AB=12,易證△AOM∽△ABE,根據相似三角形的性質即可求解.【詳解】解:(1)AE與⊙O相切.理由如下:連接OM,則OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,設⊙O的半徑為r,則AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴,∴=,解得:r=2.1,∴⊙O的半徑為2.1.23、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】
(1)利用平行線的性質及中點的定義,可利用AAS證得結論;
(2)由(1)可得AF=BD,結合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質可證得AD=CD,可證得四邊形ADCF為菱形;
(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵AD為BC邊上的中線
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點,E是AD的中點,
∴AD=DC=BC,
∴四邊形ADCF是菱形;
(3)連接DF,
∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=5,
∵四邊形ADCF是菱形,
∴S菱形ADCF=AC?DF=×4×5=1.【點睛】本題主要考查菱形的性質及判定,利用全等三角形的性質證得AF=CD是解題的關鍵,注意菱形面積公式的應用.24、(1)甲種材料每千克25元,乙種材料每千克35元.(2)共有四種方案;(3)生產A產品21件,B產品39件成本最低.【解析】試題分析:(1)、首先設甲種材料每千克x元,乙種材料每千克y元,根據題意列出二元一次方程組得出答案;(2)、設生產B產品a件,則A產品(60-a)件,根據題意列出不等式組,然后求出a的取值范圍,得出方案;得出生產成本w與a的函數關系式,根據函數的增減性得出答案.試題解析:(1)設甲種材料每千克x元,乙種材料每千克y元,依題意得:x+y=602y+3y=155解得:答:甲種材料每千克25元,乙種材料每千克35元.(2)生產B產品a件,生產A產品(60-a)件.依題意得:(25×4+35×1)(60-a)+(35×3+25×3)a≤10000a>38解得:∵a的值為非負整數∴a=39、40、41、42∴共有如下四種方案:A種21件,B種39件;A種20件,B種40件;A種19件,B種41件;A種18件,B種42件(3)、答:生產A產品21件,B產品39件成本最低.設生產成本為W元,則W與a的關系式為:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500∵k=55>0∴W隨a增大而增大∴當a=39時,總成本最低.考點:二元一次方程組的應用、不等式組的應用、一次函數的應用.25、電視塔高為米,點的鉛直高度為(米).【解析】
過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數求出OC=100,根據山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數即可求解.【詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度高效離婚訴訟協議模板編制指南
- 兩人合伙購車法律合同范本2024版B版
- 二零二五年度農民工就業(yè)合同范本(勞動權益保障)
- 2025年度智能倉儲車間租賃管理合同模板3篇
- 二零二五年度出租車租賃市場推廣與廣告合作協議4篇
- 二零二五年度初中學校紀律教育與安全防護協議書4篇
- 二零二五版樓層套房租賃合同書(含室內空氣凈化服務)4篇
- 2025年度能源企業(yè)常年法律顧問聘請合同3篇
- 2025年度體育館場地標準租賃與賽事宣傳推廣合同
- 2025年環(huán)保污水處理設施建設及運營合同4篇
- 2024年高考八省聯考地理適應性試卷附答案解析
- 足浴技師與店內禁止黃賭毒協議書范文
- 中國高血壓防治指南(2024年修訂版)要點解讀
- 2024-2030年中國光電干擾一體設備行業(yè)發(fā)展現狀與前景預測分析研究報告
- 湖南省岳陽市岳陽樓區(qū)2023-2024學年七年級下學期期末數學試題(解析版)
- 農村自建房安全合同協議書
- 杜仲葉藥理作用及臨床應用研究進展
- 4S店售后服務6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應用
- 無線廣播行業(yè)現狀分析
- 漢語言溝通發(fā)展量表(長表)-詞匯及手勢(8-16月齡)
評論
0/150
提交評論