蘇州市振華中學(xué)2022年數(shù)學(xué)九年級(jí)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
蘇州市振華中學(xué)2022年數(shù)學(xué)九年級(jí)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
蘇州市振華中學(xué)2022年數(shù)學(xué)九年級(jí)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
蘇州市振華中學(xué)2022年數(shù)學(xué)九年級(jí)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
蘇州市振華中學(xué)2022年數(shù)學(xué)九年級(jí)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.將n個(gè)邊長都為1cm的正方形按如圖所示的方法擺放,點(diǎn)A1,A2,…,An分別是正方形對(duì)角線的交點(diǎn),則n個(gè)正方形重疊形成的重疊部分的面積和為()A.cm2 B.cm2 C.cm2 D.()ncm22.若分式的運(yùn)算結(jié)果為,則在中添加的運(yùn)算符號(hào)為()A.+ B.- C.+或÷ D.-或×3.在某中學(xué)的迎國慶聯(lián)歡會(huì)上有一個(gè)小嘉賓抽獎(jiǎng)的環(huán)節(jié),主持人把分別寫有“我”、“愛”、“祖”、“國”四個(gè)字的四張卡片分別裝入四個(gè)外形相同的小盒子并密封起來,由主持人隨機(jī)地弄亂這四個(gè)盒子的順序,然后請(qǐng)出抽獎(jiǎng)的小嘉賓,讓他在四個(gè)小盒子的外邊也分別寫上“我”、“愛”、“祖”、“國”四個(gè)字,最后由主持人打開小盒子取出卡片,如果每一個(gè)盒子上面寫的字和里面小卡片上面寫的字都不相同就算失敗,其余的情況就算中獎(jiǎng),那么小嘉賓中獎(jiǎng)的概率為()A. B. C. D.4.如圖,BC是⊙O的直徑,點(diǎn)A、D在⊙O上,若∠ADC=48°,則∠ACB等于()度.A.42 B.48 C.46 D.505.如圖所示,△ABC內(nèi)接于⊙O,∠C=45°.AB=4,則⊙O的半徑為()A. B.4C. D.56.口袋中有14個(gè)紅球和若干個(gè)白球,這些球除顏色外都相同,從口袋中隨機(jī)摸出一個(gè)球,記下顏色后放回,多次實(shí)驗(yàn)后發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.3,則白球的個(gè)數(shù)是()A.5 B.6 C.7 D.87.如圖,在中,弦AB=12,半徑與點(diǎn)P,且P為的OC中點(diǎn),則AC的長是()A. B.6 C.8 D.8.已知函數(shù),當(dāng)時(shí),<x<,則函數(shù)的圖象可能是下圖中的()A. B.C. D.9.如表記錄了甲、乙、丙、丁四名跳高運(yùn)動(dòng)員最近幾次選拔賽成績的平均數(shù)與方差:甲乙丙丁平均數(shù)(cm)181186181186方差3.53.56.57.5根據(jù)表中數(shù)據(jù),要從中選擇一名成績好且發(fā)揮穩(wěn)定的運(yùn)動(dòng)員參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁10.如圖,已知,分別為正方形的邊,的中點(diǎn),與交于點(diǎn),為的中點(diǎn),則下列結(jié)論:①,②,③,④.其中正確結(jié)論的有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)11.已知,下列變形錯(cuò)誤的是()A. B. C. D.12.拋物線與y軸的交點(diǎn)坐標(biāo)是()A.(4,0) B.(-4,0) C.(0,-4) D.(0,4)二、填空題(每題4分,共24分)13.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長是______.14.如圖,在直角坐標(biāo)系中,已知點(diǎn)、,對(duì)連續(xù)作旋轉(zhuǎn)變換,依次得到,則的直角頂點(diǎn)的坐標(biāo)為__________.15.小明和小亮在玩“石頭、剪子、布”的游戲,兩人一起做同樣手勢(shì)的概率是_____________.16.把配方成的形式為__________.17.一輛汽車在行駛過程中,路程(千米)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系如圖所示.當(dāng)時(shí),關(guān)于的函數(shù)解析式為,那么當(dāng)時(shí),關(guān)于的函數(shù)解析式為________.18.如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為y=x,點(diǎn)O1的坐標(biāo)為(1,0),以O(shè)1為圓心,O1O為半徑畫圓,交直線l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,以O(shè)2為圓心,O2O為半徑畫圓,交直線l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,以O(shè)3為圓心,O3O為半徑畫圓,交直線l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4;…按此做法進(jìn)行下去,其中的長為_____.三、解答題(共78分)19.(8分)(問題情境)(1)古希臘著名數(shù)學(xué)家歐幾里得在《幾何原本》提出了射影定理,又稱“歐幾里德定理”:在直角三角形中,斜邊上的高是兩條直角邊在斜邊射影的比例中項(xiàng),每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng).射影定理是數(shù)學(xué)圖形計(jì)算的重要定理.其符號(hào)語言是:如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,則:(1)AC2=AB·AD;(2)BC2=AB·BD;(3)CD2=AD·BD;請(qǐng)你證明定理中的結(jié)論(1)AC2=AB·AD.(結(jié)論運(yùn)用)(2)如圖2,正方形ABCD的邊長為3,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E在CD上,過點(diǎn)C作CF⊥BE,垂足為F,連接OF,①求證:△BOF∽△BED;②若,求OF的長.20.(8分)將一副直角三角板按右圖疊放.(1)證明:△AOB∽△COD;(2)求△AOB與△DOC的面積之比.21.(8分)若二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,且過點(diǎn)C(3,﹣2).(1)求二次函數(shù)表達(dá)式;(2)若點(diǎn)P為拋物線上第一象限內(nèi)的點(diǎn),且S△PBA=5,求點(diǎn)P的坐標(biāo);(3)在AB下方的拋物線上是否存在點(diǎn)M,使∠ABO=∠ABM?若存在,求出點(diǎn)M到y(tǒng)軸的距離;若不存在,請(qǐng)說明理由.22.(10分)如圖,點(diǎn)E為□ABCD中一點(diǎn),EA=ED,∠AED=90o,點(diǎn)F,G分別為AB,BC上的點(diǎn),連接DF,AG,AD=AG=DF,且AG⊥DF于點(diǎn)H,連接EG,DG,延長AB,DG相交于點(diǎn)P.(1)若AH=6,F(xiàn)H=2,求AE的長;(2)求證:∠P=45o;(3)若DG=2PG,求證:∠AGE=∠EDG.23.(10分)如圖,已知拋物線經(jīng)過點(diǎn)、,且與軸交于點(diǎn),拋物線的頂點(diǎn)為,連接,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(不與、)重合.(1)求拋物線的解析式,并寫出頂點(diǎn)的坐標(biāo);(2)過點(diǎn)作軸于點(diǎn),求面積的最大值及取得最大值時(shí)點(diǎn)的坐標(biāo);(3)在(2)的條件下,若點(diǎn)是軸上一動(dòng)點(diǎn),點(diǎn)是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn),使得以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.24.(10分)一種拉桿式旅行箱的示意圖如圖所示,箱體長,拉桿最大伸長距離,(點(diǎn)在同一條直線上),在箱體的底端裝有一圓形滾輪與水平地面切于點(diǎn)某一時(shí)刻,點(diǎn)距離水平面,點(diǎn)距離水平面.(1)求圓形滾輪的半徑的長;(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感覺較為舒服,已知某人的手自然下垂在點(diǎn)處且拉桿達(dá)到最大延伸距離時(shí),點(diǎn)距離水平地面,求此時(shí)拉桿箱與水平面所成角的大小(精確到,參考數(shù)據(jù):).25.(12分)如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線交于B,C兩點(diǎn).(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);(2)求△ABC的面積;(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.26.如圖,一塊直角三角板的直角頂點(diǎn)放在正方形的邊上,并且使一條直角邊經(jīng)過點(diǎn).另一條直角邊與交于點(diǎn).求證:.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為n-1陰影部分的和.【詳解】由題意可得陰影部分面積等于正方形面積的,即是,5個(gè)這樣的正方形重疊部分(陰影部分)的面積和為×4,n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為×(n-1)=cm1.故選B.【點(diǎn)睛】考查了正方形的性質(zhì),解決本題的關(guān)鍵是得到n個(gè)這樣的正方形重疊部分(陰影部分)的面積和的計(jì)算方法,難點(diǎn)是求得一個(gè)陰影部分的面積.2、C【分析】根據(jù)分式的運(yùn)算法則即可求出答案.【詳解】解:+=,÷==x,故選:C.【點(diǎn)睛】本題考查分式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用分式的運(yùn)算法則,本題屬于基礎(chǔ)題型.3、B【分析】得出總的情況數(shù)和失敗的情況數(shù),根據(jù)概率公式計(jì)算出失敗率,從而得出中獎(jiǎng)率.【詳解】共有4×4=16種情況,失敗的情況占3+2+1=6種,失敗率為,中獎(jiǎng)率為.故選:B.【點(diǎn)睛】本題考查了利用概率公式求概率.正確得出失敗情況的總數(shù)是解答本題的關(guān)鍵.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、A【分析】連接AB,由圓周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性質(zhì)即可得出答案.【詳解】解:連接AB,如圖所示:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故選:A.【點(diǎn)睛】本題考查了圓周角定理以及直角三角形的性質(zhì);熟練掌握?qǐng)A周角定理是解題的關(guān)鍵.5、A【解析】試題解析:連接OA,OB.∴在中,故選A.點(diǎn)睛:在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于圓心角的一半.6、B【分析】設(shè)白球的個(gè)數(shù)為x,利用概率公式即可求得.【詳解】設(shè)白球的個(gè)數(shù)為x,由題意得,從14個(gè)紅球和x個(gè)白球中,隨機(jī)摸出一個(gè)球是白球的概率為0.3,則利用概率公式得:,解得:,經(jīng)檢驗(yàn),x=6是原方程的根,故選:B.【點(diǎn)睛】本題考查了等可能下概率的計(jì)算,理解題意利用概率公式列出等式是解題關(guān)鍵.7、D【分析】根據(jù)垂徑定理求出AP,連結(jié)OA根據(jù)勾股定理構(gòu)造方程可求出OA、OP,再求出PC,最后根據(jù)勾股定理即可求出AC.【詳解】解:如圖,連接OA,∵AB=12,OC⊥AB,OC過圓心O,∴AP=BP=AB=6,∵P為的OC中點(diǎn),設(shè)⊙O的半徑為2R,即OA=OC=2R,則PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故選:D.【點(diǎn)睛】本題考查了垂徑定理和勾股定理,能根據(jù)垂徑定理求出AP的長是解此題的關(guān)鍵.8、A【分析】先可判定a<0,可知=,=,可得∴a=6b,a=-6c,不妨設(shè)c=1,進(jìn)而求出解析式,找出符合要求的答案即可.【詳解】解:∵函數(shù),當(dāng)時(shí),<x<,,∴可判定a<0,可知=+=,=×=∴a=6b,a=-6c,則b=-c,不妨設(shè)c=1,則函數(shù)為函數(shù),即y=(x-2)(x+3),∴可判斷函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo)是(2,0),(-3,0),∴A選項(xiàng)是正確的.故選A.【點(diǎn)睛】本題考查拋物線和x軸交點(diǎn)的問題以及二次函數(shù)與系數(shù)關(guān)系,靈活掌握二次函數(shù)的性質(zhì)是解決問題的關(guān)鍵.9、B【分析】根據(jù)平均數(shù)與方差的意義解答即可.【詳解】解:,乙與丁二選一,又,選擇乙.【點(diǎn)睛】本題考查數(shù)據(jù)的平均數(shù)與方差的意義,理解兩者所代表的的意義是解答關(guān)鍵.10、B【分析】根據(jù)正方形的性質(zhì)可得,然后利用SAS即可證出,根據(jù)全等三角形的性質(zhì)可得:,根據(jù)直角三角形的性質(zhì)和三角形的內(nèi)角和,即可判斷①;根據(jù)中線的定義即可判斷②;設(shè)正方形的邊長為,根據(jù)相似三角形的判定證出,列出比例式,即可判斷③;過點(diǎn)作于,易證△AMN∽△AFB,列出比例式,利用勾股定理求出ME、MF和MB即可判斷④.【詳解】解:在正方形中,,,、分別為邊,的中點(diǎn),,在和中,,,,,,故①正確;是的中線,,,故②錯(cuò)誤;設(shè)正方形的邊長為,則,在中,,,,,,即,解得:,,,故③正確;如圖,過點(diǎn)作于,∴∴△AMN∽△AFB∴,即,解得,,根據(jù)勾股定理,,,,故④正確.綜上所述,正確的結(jié)論有①③④共3個(gè)故選:B.【點(diǎn)睛】此題考查的是正方形的性質(zhì)、全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.11、B【解析】根據(jù)比例式的性質(zhì),即可得到答案.【詳解】∵?,?,?,?,∴變形錯(cuò)誤的是選項(xiàng)B.故選B.【點(diǎn)睛】本題主要考查比例式的性質(zhì),掌握比例式的內(nèi)項(xiàng)之積等于外項(xiàng)之積,是解題的關(guān)鍵.12、D【解析】試題分析:求圖象與y軸的交點(diǎn)坐標(biāo),令x=0,求y即可.當(dāng)x=0時(shí),y=4,所以y軸的交點(diǎn)坐標(biāo)是(0,4).故選D.考點(diǎn):二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.二、填空題(每題4分,共24分)13、或.【解析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個(gè)定值,且∠OMN不為直角.故當(dāng)∠ONM=90°或∠MON=90°時(shí),△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當(dāng)∠ONM=90°時(shí),則DN⊥BC.過點(diǎn)E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當(dāng)∠MON=90°時(shí),則DN⊥ME.過點(diǎn)E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應(yīng)填寫:或.點(diǎn)睛:在解決本題的過程中,難點(diǎn)在于對(duì)直角三角形中直角的分類討論;關(guān)鍵點(diǎn)是通過等角代換將一個(gè)在原直角三角形中不易求得的三角函數(shù)值轉(zhuǎn)換到一個(gè)容易求解的直角三角形中進(jìn)行求解.另外,本題也可以用相似三角形的方法進(jìn)行求解,不過利用銳角三角函數(shù)相對(duì)簡便.14、【分析】根據(jù)勾股定理列式求出AB的長,再根據(jù)第四個(gè)三角形與第一個(gè)三角形的位置相同可知每三個(gè)三角形為一個(gè)循環(huán)組依次循環(huán),然后求出一個(gè)循環(huán)組旋轉(zhuǎn)前進(jìn)的長度,再用2019除以3,根據(jù)商為673可知第2019個(gè)三角形的直角頂點(diǎn)為循環(huán)組的最后一個(gè)三角形的頂點(diǎn),求出即可.【詳解】解:∵點(diǎn)A(-3,0)、B(0,4),

∴AB==5,

由圖可知,每三個(gè)三角形為一個(gè)循環(huán)組依次循環(huán),一個(gè)循環(huán)組前進(jìn)的長度為:4+5+3=12,

∵2019÷3=673,

∴△2019的直角頂點(diǎn)是第673個(gè)循環(huán)組的最后一個(gè)三角形的直角頂點(diǎn),

∵673×12=8076,

∴△2019的直角頂點(diǎn)的坐標(biāo)為(8076,0).故答案為(8076,0).【點(diǎn)睛】本題主要考查了點(diǎn)的坐標(biāo)變化規(guī)律,仔細(xì)觀察圖形得到每三個(gè)三角形為一個(gè)循環(huán)組依次循環(huán)是解題的關(guān)鍵,也是求解的難點(diǎn).圖形或點(diǎn)旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo).15、【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出兩人隨機(jī)同時(shí)出手一次,做同樣手勢(shì)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:

共有9種等可能的結(jié)果數(shù),其中兩人隨機(jī)同時(shí)出手一次,做同樣手勢(shì)的結(jié)果數(shù)為3,

故兩人一起做同樣手勢(shì)的概率是的概率為.故答案為:.【點(diǎn)睛】本題涉及列表法和樹狀圖法以及相關(guān)概率知識(shí),用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.16、【分析】對(duì)二次函數(shù)進(jìn)行配方,即可得到答案.【詳解】===.故答案是:.【點(diǎn)睛】本題主要考查二次函數(shù)的頂點(diǎn)式,掌握二次函數(shù)的配方,是解題的關(guān)鍵.17、【分析】將x=1代入得出此時(shí)y的值,然后設(shè)當(dāng)1≤x≤2時(shí),y關(guān)于x的函數(shù)解析式為y=kx+b,再利用待定系數(shù)法求一次函數(shù)解析式即可.【詳解】解:∵當(dāng)時(shí)0≤x≤1,y關(guān)于x的函數(shù)解析式為y=1x,

∴當(dāng)x=1時(shí),y=1.

又∵當(dāng)x=2時(shí),y=11,

設(shè)當(dāng)1<x≤2時(shí),y關(guān)于x的函數(shù)解析式為y=kx+b,將(1,1),(2,11)分別代入解析式得,,解得,所以,當(dāng)時(shí),y關(guān)于x的函數(shù)解析式為y=100x-2.故答案為:y=100x-2.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,主要利用了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求一次函數(shù)解析式,比較簡單.18、22015π【分析】連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可知為圓的周長,再找出圓半徑的規(guī)律即可解題.【詳解】解:連接P1O1,P2O2,P3O3…,∵P1是⊙O1上的點(diǎn),∴P1O1=OO1,∵直線l解析式為y=x,∴∠P1OO1=45°,∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,同理,PnOn垂直于x軸,∴為圓的周長,∵以O(shè)1為圓心,O1O為半徑畫圓,交x軸正半軸于點(diǎn)O2,以O(shè)2為圓心,O2O為半徑畫圓,交x軸正半軸于點(diǎn)O3,以此類推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案為:22015π.【點(diǎn)睛】本題考查了圖形類規(guī)律探索、一次函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)以及弧長的計(jì)算,本題中準(zhǔn)確找到圓半徑的規(guī)律是解題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)①見解析;②【分析】(1)證明△ACD∽△ABC,即可得證;

(2)①BC2=BO?BD,BC2=BF?BE,即BO?BD=BF?BE,即可求解;②在Rt△BCE中,BC=3,BE=,利用△BOF∽△BED,即可求解.【詳解】解:(1)證明:如圖1,∵CD⊥AB,

∴∠BDC=90°,

而∠A=∠A,∠ACB=90°,

∴△ACD∽△ABC,

∴AC:AB=AD:AC,

∴AC2=AB·AD;

(2)①證明:如圖2,

∵四邊形ABCD為正方形,

∴OC⊥BO,∠BCD=90°,

∴BC2=BO?BD,

∵CF⊥BE,

∴BC2=BF?BE,

∴BO?BD=BF?BE,

即,而∠OBF=∠EBD,

∴△BOF∽△BED;

②∵在Rt△BCE中,BC=3,BE=,∴CE=,∴DE=BC-CE=2;

在Rt△OBC中,OB=BC=,∵△BOF∽△BED,∴,即,∴OF=.【點(diǎn)睛】本題為三角形相似綜合題,涉及到勾股定理運(yùn)用、正方形基本知識(shí)等,難點(diǎn)在于找到相似三角形,此類題目通常難度較大.20、(1)見解析;(2)1:1【分析】(1)推出∠OCD=∠A,∠D=∠ABO,就可得△AOB∽△COD;(2)設(shè)BC=a,則AB=a,BD=2a,由勾股定理知:CD=a,得AB:CD=1:,根據(jù)相似三角形性質(zhì)可得面積比.【詳解】解:(1)∵∠ABC=90°,∠DCB=90°∴AB∥CD,∴∠OCD=∠A,∠D=∠ABO,∴△AOB∽△COD(2)設(shè)BC=a,則AB=a,BD=2a由勾股定理知:CD=a∴AB:CD=1:∴△AOB與△DOC的面積之比等于1:1.【點(diǎn)睛】考核知識(shí)點(diǎn):相似三角形的判定和性質(zhì).理解相似三角形的判定和性質(zhì)是關(guān)鍵.21、(1);(2);(3)存在,點(diǎn)M到y(tǒng)軸的距離為【分析】(1)由待定系數(shù)法可求解析式;(2)設(shè)直線BP與x軸交于點(diǎn)E,過點(diǎn)P作PD⊥OA于D,設(shè)點(diǎn)P(a,a2-a-2),則PD=a2-a-2,利用參數(shù)求出BP解析式,可求點(diǎn)E坐標(biāo),由三角形面積公式可求a,即可得點(diǎn)P坐標(biāo);(3)如圖2,延長BM到N,使BN=BO,連接ON交AB于H,過點(diǎn)H作HF⊥AO于F,由全等三角形的性質(zhì)和銳角三角函數(shù)求出點(diǎn)N坐標(biāo),求出BN解析式,可求點(diǎn)M坐標(biāo),即可求解.【詳解】(1)∵二次函數(shù)y=ax2+bx-2的圖象過點(diǎn)A(4,0),點(diǎn)C(3,-2),∴,解得:∴二次函數(shù)表達(dá)式為:;(2)設(shè)直線BP與x軸交于點(diǎn)E,過點(diǎn)P作PD⊥OA于D,設(shè)點(diǎn)P(a,a2-a-2),則PD=a2-a-2,∵二次函數(shù)與y軸交于點(diǎn)B,∴點(diǎn)B(0,-2),設(shè)BP解析式為:,∴a2-a-2=ka﹣2,∴,∴BP解析式為:y=()x﹣2,∴y=0時(shí),,∴點(diǎn)E(,0),∵S△PBA=5,∵S△PBA=,∴,∴a=-1(不合題意舍去),a=5,∴點(diǎn)P(5,3);(3)如圖2,延長BM到N,使BN=BO,連接ON交AB于H,過點(diǎn)H作HF⊥AO于F,∵BN=BO,∠ABO=∠ABM,AB=AB,∴△ABO≌△ABN(SAS)∴AO=AN,且BN=BO,∴AB垂直平分ON,∴OH=HN,AB⊥ON,∵AO=4,BO=2,∴AB=,∵S△AOB=×OA×OB=×AB×OH,∴OH=,∴AH=,∵cos∠BAO=,∴,∴AF=,∴HF=,OF=AO﹣AF=4﹣=,∴點(diǎn)H(,-),∵OH=HN,∴點(diǎn)N(,﹣)設(shè)直線BN解析式為:y=mx﹣2,∴﹣=m﹣2,∴m=﹣,∴直線BN解析式為:y=﹣x﹣2,∴x2﹣x﹣2=﹣x﹣2,∴x=0(不合題意舍去),x=,∴點(diǎn)M坐標(biāo)(,﹣),∴點(diǎn)M到y(tǒng)軸的距離為.【點(diǎn)睛】本題考查二次函數(shù)綜合題、待定系數(shù)法、一次函數(shù)的應(yīng)用、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是構(gòu)建合適的輔助線,靈活運(yùn)用所學(xué)知識(shí)解決問題,難度有點(diǎn)大.22、(1);(2)見詳解;(3)見詳解【分析】(1)在Rt△ADH中,設(shè)AD=DF=x,則DH=x-2,由勾股定理,求出AD的長度,由等腰直角三角形的性質(zhì),即可求出AE的長度;(2)根據(jù)題意,設(shè)∠ADF=2a,則求出∠FAH=,然后∠ADG=∠AGD=,再根據(jù)三角形的外角性質(zhì),即可得到答案;(3)過點(diǎn)A作AM⊥DP于點(diǎn)M,連接EM,EF,根據(jù)等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),得到角之間的關(guān)系,從而通過等量互換,即可得到結(jié)論成立.【詳解】解:(1)∵AG⊥DF于點(diǎn)H,∴∠AHD=90°,∵AH=6,F(xiàn)H=2,在Rt△ADH中,設(shè)AD=DF=x,則DH=DFFH=x-2,由勾股定理,得:,∴,∴,即AD=DF=AG=10,∵EA=ED,∠AED=90o,∴△ADE是等腰直角三角形,∴AE=DE=;(2)如圖:∵∠AED=90o,AG⊥DF,∴∠EAH=∠EDH,設(shè)∠ADF=2a,∵DA=DF,則∠AFH=∠DAF=,∴∠FAH=,∴∠DAH=,∵AD=AG,∴∠ADG=∠AGD=,∴;(3)過點(diǎn)A作AM⊥DP于點(diǎn)M,連接EM,EF,如圖:∵AD=AG,DG=2PG,∴PG=GM=DM,∵∠P=45°,∴△APM是等腰直角三角形,∴AM=PM=DG,∵∠ANO=∠DNM,∠AED=∠AMD=90°,∴∠OAM=∠ODG,∵AE=DE,AM=DG,∴△AEM≌△DEG,∴EM=EG,∠AEM=∠DEG,∴∠AED+∠DEM=∠DEM+∠MEG,∴∠MEG=∠AED=90°,∴△MEG是等腰直角三角形;∴∠EMG=45°,∵AM⊥DP,∴∠AME=∠EMG=45°,∴ME是∠AMP的角平分線,∵AM=PM,∴ME⊥AP,∵∠AOH=∠DOE,∴∠OAH=∠ODE,∴△AEG≌△DEF(SAS),∴∠AEG=∠DEF,∴∠AED+∠AEF=∠AEF+∠FEG,∴∠FEG=∠AED=90°,∴∠FEG+∠MEG=180°,即點(diǎn)F、E、M,三點(diǎn)共線,∴MF⊥AP,∵AM平分∠DAG,∴∠GAM=∠DAM,∵∠EAN+∠DAM=45°,∴∠EAN+∠GAM=45°,∵∠PAG+∠GAM=45°,∴∠EAN=∠PAG,∵∠PAG+∠AFH=∠DFE+∠AFH=90°,∴∠EAN=∠PAG=∠DFE,∵△AEG≌△DEF,∴∠AGE=∠DFE=∠EAN,∵∠EAN=∠EDM,∴∠AGE=∠EDM,∴∠AGE=∠EDG.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),三角形的內(nèi)角和定理,以及角平分線的性質(zhì),解題的關(guān)鍵是熟練掌握所學(xué)的性質(zhì)進(jìn)行證明,注意正確做出輔助線,找出角之間的關(guān)系,邊之間的關(guān)系,從而進(jìn)行證明.23、(1),D的坐標(biāo)為(1,4);(2)當(dāng)m=時(shí)△BPE的面積取得最大值為,P的坐標(biāo)是(,3);(3)存在,M點(diǎn)的坐標(biāo)為;;;;;【分析】(1)先根據(jù)拋物線經(jīng)過A(-1,0)B(3,0)兩點(diǎn),分別求出a、b的值,再代入拋物線即可求出二次函數(shù)的解析式并得出頂點(diǎn)的坐標(biāo);(2)先設(shè)出BD解析式y(tǒng)=kx+b,再把B、D兩點(diǎn)坐標(biāo)代入求出k、b的值,得出BD解析式,再根據(jù)面積公式即可求出最大值以及點(diǎn)的坐標(biāo);(3)根據(jù)題意利用平行四邊形的性質(zhì)進(jìn)行分析求值,注意分類討論.【詳解】解:(1)∵二次函數(shù)y=ax2+bx+3經(jīng)過點(diǎn)A(﹣1,0)、B(3,0)∴所以二次函數(shù)的解析式為:D的坐標(biāo)為(1,4)(2)設(shè)BD的解析式為y=kx+b∵過點(diǎn)B(3,0),D(1,4)∴解得BD的解析式為y=-2x+6設(shè)P(m,)PE⊥y軸于點(diǎn)E∴△BPE的PE邊上的高h(yuǎn)=S△BPE=×PE×h=m()==∵a=-1<0當(dāng)m=時(shí)△BPE的面積取得最大值為當(dāng)m=時(shí),y=-2×+6=3P的坐標(biāo)是(,3)(3)存在這樣的點(diǎn),使得以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形,當(dāng)點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形,可得BM平行于PN,則有N點(diǎn)縱坐標(biāo)等于P點(diǎn)縱坐標(biāo),把y=3代入求出N的坐標(biāo)(0,3)或(2,3),當(dāng)N的坐標(biāo)(0,3)或(2,3)時(shí),根據(jù)平行四邊形性質(zhì)求得M點(diǎn)的坐標(biāo)為;,;當(dāng)BP平行于MN時(shí),根據(jù)平行四邊形性質(zhì)求得M點(diǎn)的坐標(biāo)為;;.M點(diǎn)的坐標(biāo)為:;;;;.【點(diǎn)睛】本題考查運(yùn)用待定系數(shù)法求得函數(shù)的解析式,根據(jù)二次函數(shù)的解析式求得函數(shù)的最值,平行四邊形的性質(zhì)進(jìn)行計(jì)算,注意數(shù)形結(jié)合的思想.24、(1);(2)【分析】(1)過點(diǎn)作于點(diǎn),交于點(diǎn),由平行得到,再根據(jù)相似三角形的性質(zhì)得到,列出關(guān)于半徑的方程,解方程即可得解;(2)在(1)結(jié)論的基礎(chǔ)上結(jié)合已知條件,利用銳角三角函數(shù)解即可得解.【詳解】解:(1)過點(diǎn)作于點(diǎn),交于點(diǎn),如圖:∴∴∴設(shè)圓形滾輪的半徑的長是∴,即∴∴圓形滾輪的半徑

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論