天津市河北區(qū)2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第1頁
天津市河北區(qū)2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第2頁
天津市河北區(qū)2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第3頁
天津市河北區(qū)2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第4頁
天津市河北區(qū)2022-2023學年數(shù)學九年級第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.平面直角坐標系內(nèi)一點P(2,-3)關于原點對稱點的坐標是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)2.如圖,中,,則的值為()A. B. C. D.3.設是方程的兩個實數(shù)根,則的值為()A.2017 B.2018 C.2019 D.20204.一元二次方程(x+2)(x﹣1)=4的解是()A.x1=0,x2=﹣3B.x1=2,x2=﹣3C.x1=1,x2=2D.x1=﹣1,x2=﹣25.如圖,A,B,C,D為⊙O的四等分點,動點P從圓心O出發(fā),沿O﹣C﹣D﹣O路線作勻速運動,設運動時間為t(s).∠APB=y(tǒng)(°),則下列圖象中表示y與t之間函數(shù)關系最恰當?shù)氖牵ǎ〢. B.C. D.6.如圖,⊙O中,弦AB與CD交于點M,∠A=45°,∠AMD=75°,則∠B的度數(shù)是()A.15° B.25° C.30° D.75°7.如圖,在Rt△ABC中,∠BAC=90o,AH是高,AM是中線,那么在結(jié)論①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中錯誤的個數(shù)有()A.0個 B.1個 C.2個 D.3個8.下列圖形中不是中心對稱圖形的是()A. B. C. D.9.把拋物線y=﹣x2向右平移1個單位,再向下平移2個單位,所得拋物線是()A.y=(x﹣1)+2 B.y=﹣(x﹣1)+2C.y=﹣(x+1)+2 D.y=﹣(x﹣1)﹣210.如圖,反比例函數(shù)y=與y=的圖象上分別有一點A,B,且AB∥x軸,AD⊥x軸于D,BC⊥x軸于C,若矩形ABCD的面積為8,則b﹣a=()A.8 B.﹣8 C.4 D.﹣4二、填空題(每小題3分,共24分)11.如圖,轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止后(指針落在線上重轉(zhuǎn)),指針停留的區(qū)域中的數(shù)字為偶數(shù)的概率是___________.12.一個圓錐的側(cè)面展開圖是半徑為8的半圓,則該圓錐的全面積是______________.13.將三角形紙片(△ABC)按如圖所示的方式折疊,使點B落在邊AC上,記為點B′,折痕為EF.已知AB=AC=3,BC=4,若以點B′,F(xiàn),C為頂點的三角形與△ABC相似,則BF的長度是_________.14.圖甲是小張同學設計的帶圖案的花邊作品,該作品由形如圖乙的矩形圖案設計拼接面成(不重疊,無縫隙).圖乙中,點E、F、G、H分別為矩形AB、BC、CD、DA的中點,若AB=4,BC=6,則圖乙中陰影部分的面積為_____.15.如圖,甲、乙兩樓之間的距離為30米,從甲樓測得乙樓頂仰角為α=30°,觀測乙樓的底部俯角為β=45°,乙樓的高h=_____米(結(jié)果保留整數(shù)≈1.7,≈1.4).16.如圖,P1是反比例函數(shù)(k>0)在第一象限圖象上的一點,點A1的坐標為(2,0).若△P1OA1與△P2A1A2均為等邊三角形,則A2點的坐標為_____.17.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.18.已知在正方形ABCD中,點E、F分別為邊BC與CD上的點,且∠EAF=45°,AE與AF分別交對角線BD于點M、N,則下列結(jié)論正確的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF三、解答題(共66分)19.(10分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.20.(6分)已知,如圖,有一塊含有30°的直角三角形的直角邊的長恰與另一塊等腰直角三角形的斜邊的長相等.把該套三角板放置在平面直角坐標系中,且(1)若某開口向下的拋物線的頂點恰好為點,請寫出一個滿足條件的拋物線的解析式.(2)若把含30°的直角三角形繞點按順時針方向旋轉(zhuǎn)后,斜邊恰好與軸重疊,點落在點,試求圖中陰影部分的面積(結(jié)果保留)21.(6分)如圖,直線與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A,B兩點.(1)求拋物線的解析式.(2)點P是第一象限拋物線上的一點,連接PA,PB,PO,若△POA的面積是△POB面積的倍.①求點P的坐標;②點Q為拋物線對稱軸上一點,請求出QP+QA的最小值.22.(8分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC邊上一點,且DA=DB,O是AB的中點,CE是△BCD的中線.(1)如圖a,連接OC,請直接寫出∠OCE和∠OAC的數(shù)量關系:;(2)點M是射線EC上的一個動點,將射線OM繞點O逆時針旋轉(zhuǎn)得射線ON,使∠MON=∠ADB,ON與射線CA交于點N.①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關系;②若∠BAC=30°,BC=m,當∠AON=15°時,請直接寫出線段ME的長度(用含m的代數(shù)式表示).23.(8分)某單位800名職工積極參加向貧困地區(qū)學校捐書活動,為了解職工的捐書數(shù)量,采用隨機抽樣的方法抽取30名職工的捐書數(shù)量作為樣本,對他們的捐書數(shù)量進行統(tǒng)計,統(tǒng)計結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:(1)補全條形統(tǒng)計圖;(2)求這30名職工捐書本數(shù)的平均數(shù),寫出眾數(shù)和中位數(shù);(3)估計該單位800名職工共捐書多少本?24.(8分)如圖,在平面直角坐標系中,矩形的頂點在軸上,在軸上,把矩形沿對角線所在的直線對折,點恰好落在反比例函數(shù)的圖象上點處,與軸交于點,延長交軸于點,點剛好是的中點.已知的坐標為.(1)求反比例函數(shù)的函數(shù)表達式;(2)若是反比例函數(shù)圖象上的一點,點在軸上,若以為頂點的四邊形是平行四邊形,請直接寫出點的坐標_________.25.(10分)為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?(3)為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?26.(10分)如圖所示,陽光透過長方形玻璃投射到地面上,地面上出現(xiàn)一個明亮的平行四邊形,楊陽用量角器量出了一條對角線與一邊垂直,用直尺量出平行四邊形的一組鄰邊的長分別是30cm,50cm,請你幫助楊陽計算出該平行四邊形的面積.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】略2、D【解析】根據(jù)相似三角形的判定和性質(zhì),即可得到答案.【詳解】解:∵,∴∽,∴;故選:D.【點睛】本題考查了相似三角形的判定和性質(zhì),解題的關鍵是掌握相似三角形的判定和性質(zhì).3、D【分析】首先根據(jù)根與系數(shù)的關系,求出a+b=-3;然后根據(jù)a是方程的實數(shù)根,可得,據(jù)此求出,利用根與系數(shù)關系得:=-3,變形為()-(),代入即可得到答案.【詳解】解:∵a、b是方程的兩個實數(shù)根,

∴=-3;

又∵,

∴,∴

=()-()=2017-(-3)

=1

即的值為1.

故選:D.【點睛】本題考查了根與系數(shù)的關系與一元二次方程的解,把化成()-()是解題的關鍵.4、B【解析】解決本題可通過代入驗證的辦法或者解方程.【詳解】原方程整理得:x1+x-6=0∴(x+3)(x-1)=0∴x+3=0或x-1=0∴x1=-3,x1=1.故選B.【點睛】本題考查了一元二次方程的解法-因式分解法.把方程整理成一元二次方程的一般形式是解決本題的關鍵.5、C【解析】根據(jù)題意,分P在OC、CD、DO之間3個階段,分別分析變化的趨勢,又由點P作勻速運動,故圖像都是線段,分析選項可得答案.【詳解】根據(jù)題意,分3個階段;①P在OC之間,∠APB逐漸減小,到C點時,∠APB為45°,所以圖像是下降的線段,②P在弧CD之間,∠APB保持45°,大小不變,所以圖像是水平的線段,③P在DO之間,∠APB逐漸增大,到O點時,∠APB為90°,所以圖像是上升的線段,分析可得:C符合3個階段的描述;故選C.【點睛】本題主要考查了函數(shù)圖象與幾何變換,解決此類問題,注意將過程分成幾個階段,依次分析各個階段得變化情況,進而綜合可得整體得變化情況.6、C【分析】由三角形外角定理求得∠C的度數(shù),再由圓周角定理可求∠B的度數(shù).【詳解】∵∠A=45°,∠AMD=75°,∴∠C=∠AMD-∠A=75°-45°=30°,∴∠B=∠C=30°,故選C.7、B【分析】根據(jù)直角三角形斜邊上的中線性質(zhì)和等腰三角形的性質(zhì)得出∠B=∠BAM,根據(jù)已知條件判斷∠B=∠MAH不一定成立;根據(jù)三角形的內(nèi)角和定理及余角的性質(zhì)得出∠B=∠CAH.【詳解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中線,∴AM=BM,∴∠B=∠BAM,①正確;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②錯誤;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正確.故選:B.【點睛】本題主要考查對直角三角形斜邊上的中線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)等知識點的理解和掌握,能根據(jù)這些性質(zhì)進行推理是解此題的關鍵.8、B【分析】在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn)180度,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.【詳解】A、C、D都是中心對稱圖形;不是中心對稱圖形的只有B.故選B.【點睛】本題屬于基礎應用題,只需學生熟知中心對稱圖形的定義,即可完成.9、D【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進行求解.【詳解】拋物線y=﹣x1向右平移1個單位,得:y=﹣(x﹣1)1;再向下平移1個單位,得:y=﹣(x﹣1)1﹣1.故選:D.【點睛】此題主要考查了二次函數(shù)與幾何變換,正確記憶平移規(guī)律是解題關鍵.10、A【分析】根據(jù)反比例函數(shù)系數(shù)k的幾何意義得到|a|=S矩形ADOE,|b|=S矩形BCOE,進而得到|b|+|a|=8,然后根據(jù)a<0,b>0可得答案.【詳解】解:如圖,∵AB∥x軸,AD⊥x軸于D,BC⊥x軸于C,∴|a|=S矩形ADOE,|b|=S矩形BCOE,∵矩形ABCD的面積為8,∴S矩形ABCD=S矩形ADOE+S矩形BCOE=8,∴|b|+|a|=8,∵反比例函數(shù)y=在第二象限,反比例函數(shù)y=在第一象限,∴a<0,b>0,∴|b|+|a|=b﹣a=8,故選:A.【點睛】本題考查了反比例函數(shù)y=(k≠0)的系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.二、填空題(每小題3分,共24分)11、【分析】由1占圓,2與3占,可得把數(shù)字為1的扇形可以平分成2部分,即可得轉(zhuǎn)動轉(zhuǎn)盤一次共有4種等可能的結(jié)果,分別是1,1,2,3;然后由概率公式即可求得.【詳解】解:占圓,2與3占,把數(shù)字為1的扇形可以平分成2部分,轉(zhuǎn)動轉(zhuǎn)盤一次共有4種等可能的結(jié)果,分別是1,1,2,3;當轉(zhuǎn)盤停止后,指針指向的數(shù)字為偶數(shù)的概率是:.故答案為:.【點睛】此題考查了概率公式的應用.注意用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.12、48π【分析】首先利用圓的面積公式即可求得側(cè)面積,利用弧長公式求得圓錐的底面半徑,得到底面面積,據(jù)此即可求得圓錐的全面積.【詳解】解:側(cè)面積是:,底面圓半徑為:,底面積,故圓錐的全面積是:,故答案為:48π【點睛】本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.13、2或【分析】設BF=,根據(jù)折疊的性質(zhì)用x表示出B′F和FC,然后分兩種情況進行討論(1)△B′FC∽△ABC和△B′FC∽△BAC,最后根據(jù)兩三角形相似對應邊成比例即可求解.【詳解】設BF=,則由折疊的性質(zhì)可知:B′F=,F(xiàn)C=,(1)當△B′FC∽△ABC時,有,即:,解得:;(2)當△B′FC∽△BAC時,有,即:,解得:;綜上所述,可知:若以點B′,F(xiàn),C為頂點的三角形與△ABC相似,則BF的長度是2或故答案為2或.【點睛】本題考查了三角形相似的判定和性質(zhì),解本題時,由于題目中沒有指明△B′FC和△ABC相似時頂點的對應關系,所以根據(jù)∠C是兩三角形的公共角可知,需分:(1)△B′FC∽△ABC;(2)△B′FC∽△BAC;兩種情況分別進行討論,不要忽略了其中任何一種.14、【分析】根據(jù)S陰=S菱形PHQF﹣2S△HTN,再求出菱形PHQF的面積,△HTN的面積即可解決問題.【詳解】如圖,設FM=HN=a.由題意點E、F、G、H分別為矩形AB、BC、CD、DA的中點,∴四邊形DFBH和四邊形CFAH為平行四邊形,∴DF∥BH,CH∥AF,∴四邊形HQFP是平行四邊形又HP=CH=DP=PF,∴平行四邊形HQFP是菱形,它的面積=S矩形ABCD=×4×6=6,∵FM∥BJ,CF=FB,∴CM=MJ,∴BJ=2FM=2a,∵EJ∥AN,AE=EB,∴BJ=JN=2a,∵S△HBC=?6?4=12,HJ=BH,∴S△HCJ=×12=,∵TN∥CJ,∴△HTN∽△HCJ,∴=()2=,∴S△HTN=×=,∴S陰=S菱形PHQF﹣2S△HTN=6﹣=,故答案為.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟知矩形的性質(zhì)、菱形的判定與性質(zhì)及相似三角形的性質(zhì).15、1【分析】根據(jù)正切的定義求出CD,根據(jù)等腰直角三角形的性質(zhì)求出BD,結(jié)合圖形計算,得到答案.【詳解】解:在Rt△ACD中,tan∠CAD=,∴CD=AD?tan∠CAD=30×tan30°=10≈17,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案為:1.【點睛】本題考查解直角三角形的應用,要注意利用已知線段和角通過三角關系求解.16、(2,0)【分析】由于△P1OA1為等邊三角形,作P1C⊥OA1,垂足為C,由等邊三角形的性質(zhì)及勾股定理可求出點P1的坐標,根據(jù)點P1是反比例函數(shù)y=(k>0)圖象上的一點,利用待定系數(shù)法求出此反比例函數(shù)的解析式;作P2D⊥A1A2,垂足為D.設A1D=a,由于△P2A1A2為等邊三角形,由等邊三角形的性質(zhì)及勾股定理,可用含a的代數(shù)式分別表示點P2的橫、縱坐標,再代入反比例函數(shù)的解析式中,求出a的值,進而得出A2點的坐標.【詳解】作P1C⊥OA1,垂足為C,∵△P1OA1為邊長是2的等邊三角形,∴OC=1,P1C=2×=,∴P1(1,).代入y=,得k=,所以反比例函數(shù)的解析式為y=.作P2D⊥A1A2,垂足為D.設A1D=a,則OD=2+a,P2D=a,∴P2(2+a,a).∵P2(2+a,a)在反比例函數(shù)的圖象上,∴代入y=,得(2+a)?a=,化簡得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以點A2的坐標為(2,0).故答案為:(2,0).【點睛】此題綜合考查了反比例函數(shù)的性質(zhì),利用待定系數(shù)法求函數(shù)的解析式,正三角形的性質(zhì)等多個知識點.此題難度稍大,綜合性比較強,注意對各個知識點的靈活應用.17、1【解析】由兩圓的半徑分別為2和5,根據(jù)兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系和兩圓位置關系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關系.解題的關鍵是掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系.18、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正確;如圖,把△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABH,根據(jù)三角形的外角的性質(zhì)得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故②正確;由旋轉(zhuǎn)的性質(zhì)得,BH=DF,AH=AF,∠BAH=∠DAF,由已知條件得到∠EAH=∠EAF=45°,根據(jù)全等三角形的性質(zhì)得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故④正確;BM、DN、MN存在BM2+DN2=MN2的關系,故③錯誤.【詳解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正確;如圖,把△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABH,

由旋轉(zhuǎn)的性質(zhì)得,BH=DF,AH=AF,∠BAH=∠DAF,

∵∠EAF=45°,

∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,

∴∠EAH=∠EAF=45°,

在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),

∴EH=EF,

∴∠AEB=∠AEF,

∴BE+BH=BE+DF=EF,故④正確;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,

∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH)=90°-(45°-∠BAH)=45°+∠BAH,

∴∠ANM=∠AEB,

∴∠AEB=∠AEF=∠ANM;故②正確;BM、DN、MN滿足等式BM2+DN2=MN2,而非BM+DN=MN,故③錯誤.故答案為①②④.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),勾股定理,熟記各性質(zhì)并利用旋轉(zhuǎn)變換作輔助線構(gòu)造成全等三角形是解題的關鍵.三、解答題(共66分)19、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根據(jù)一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答案;(2)先把常數(shù)項移項,再把方程兩邊同時加上一次項系數(shù)一半的平方,即可得完全平方式,直接開平方即可得答案.【詳解】(1)3x2﹣x﹣4=1∵a=3,b=-1,c=-4,∴∴x1=,x1=-1.(2)x2﹣4x﹣5=1x2﹣4x+4=5+4(x﹣2)2=9∴x-2=3或x-2=-3∴x1=5,x2=-1.【點睛】本題考查解一元二次方程,一元二次方程的常用解法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關鍵.20、(1);(2)【分析】(1)在Rt△OBA中,由∠AOB=30°,AB=3利用特殊角的正切值即可求出OB的長度,從而得出點A的坐標,利用頂點式即可求出函數(shù)解析式;

(2)在Rt△OBA中,利用勾股定理即可求出OA的長度,在等腰直角三角形ODC中,根據(jù)OC的長度可求出OD的長,結(jié)合圖形即可得出陰影部分的面積為扇形AOA′的面積減去三角形ODC的面積,結(jié)合扇形與三角形的面積公式即可得出結(jié)論.【詳解】解:(1)在中,,∴∴∴.∴拋物線的解析式是(2)由(1)可知,由題意得∴在中,∴∴【點睛】本題考查了勾股定理、特殊角的三角函數(shù)值、扇形的面積以及等腰直角三角形的性質(zhì),解題的關鍵是:(1)求出點A的坐標;(2)利用分割圖形求面積法求出陰影部分的面積.本題屬于中檔題,難度不大,解決該題型題目時,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和(差)的形式是關鍵.21、(1);(2)①點P的坐標為(,1);②【分析】(1)先確定出點A,B坐標,再用待定系數(shù)法求出拋物線解析式;

(2)設出點P的坐標,①用△POA的面積是△POB面積的倍,建立方程求解即可;②利用對稱性找到最小線段,用兩點間距離公式求解即可.【詳解】解:(1)在中,令x=0,得y=1;令y=0,得x=2,∴A(2,0),,B(0,1).∵拋物線經(jīng)過A、B兩點,∴解得∴拋物線的解析式為.(2)①設點P的坐標為(,),過點P分別作x軸、y軸的垂線,垂足分別為D、E.∴∵∴∴,∵點P在第一象限,所以∴點P的坐標為(,1)②設拋物線與x軸的另一交點為C,則點C的坐標為(,)連接PC交對稱軸一點,即Q點,則PC的長就是QP+QA的最小值,所以QP+QA的最小值就是.【點睛】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積,對稱性,解本題的關鍵是求拋物線解析式.22、(1)∠ECO=∠OAC;(2)①OM=ON,理由見解析,②EM的值為m+m或m﹣m【分析】(1)結(jié)論:∠ECO=∠OAC.理由直角三角形斜邊中線定理,三角形的中位線定理解決問題即可.(2)①只要證明△COM≌△AON(ASA),即可解決問題.②分兩種情形:如圖3﹣1中,當點N在CA的延長線上時,如圖3﹣2中,當點N在線段AC上時,作OH⊥AC于H.分別求解即可解決問題.【詳解】解:(1)結(jié)論:∠ECO=∠OAC.理由:如圖1中,連接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案為:∠OCE=∠OAC.(2)如圖2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如圖3﹣1中,當點N在CA的延長線上時,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如圖3﹣2中,當點N在線段AC上時,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,綜上所述,滿足條件的EM的值為m+m或m﹣m.【點睛】本題屬于幾何變換綜合題,考查了直角三角形斜邊中線定理、三角形中位線定理、全等三角形的判定和性質(zhì)、解直角三角形等知識,解題的關鍵是學會用分類討論的思想思考問題.23、(1)補全圖形見解析;(2)平均數(shù)是6本,眾數(shù)是6本,中位數(shù)是6本.(3)該單位800名職工共捐書有4800本.【分析】(1)根據(jù)總數(shù)和統(tǒng)計數(shù)據(jù)求解即可;(2)根據(jù)平均數(shù),眾數(shù)和中位數(shù)定義公式求解即可;(3)根據(jù)已知平均數(shù)乘以員工總數(shù)求解即可.【詳解】解:(1)D組人數(shù)=30﹣4﹣6﹣9﹣3=8人,補圖如下:.(2)平均數(shù)是:=6(本),眾數(shù)是6本,中位數(shù)是6本.(3)∵平均數(shù)是6本,∴該單位800名職工共捐書有6×800=4800本.【點睛】本題主要考查了數(shù)據(jù)統(tǒng)計中的平均數(shù),眾數(shù)和中位數(shù)的問題,熟練掌握其定義與計算公式是解答關鍵.24、(1);(2),,(,0).【分析】(1)證得BD是CF的垂直平分線,求得,作DG⊥BF于G,求得點D的坐標為,從而求得反比例函數(shù)的解析式;(2)分3種情形,分別畫出圖形即可解決問題.【詳解】(1)∵四邊形ABOC是矩形,∴AB=OC,AC=OB,,根據(jù)對折的性質(zhì)知,,∴,,AB=DB,又∵D是CF的中點,∴BD是CF的垂直平分線,∴BC=BF,,∴,∵,∴,∵點B的坐標為,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論