版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列的公差為-2,前項(xiàng)和為,若,,為某三角形的三邊長,且該三角形有一個(gè)內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.252.甲乙丙丁四人中,甲說:我年紀(jì)最大,乙說:我年紀(jì)最大,丙說:乙年紀(jì)最大,丁說:我不是年紀(jì)最大的,若這四人中只有一個(gè)人說的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁3.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且4.如圖,網(wǎng)格紙是由邊長為1的小正方形構(gòu)成,若粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.5.設(shè)全集U=R,集合,則()A. B. C. D.6.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.127.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.8.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i9.下列命題為真命題的個(gè)數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.310.已知函數(shù)在上都存在導(dǎo)函數(shù),對(duì)于任意的實(shí)數(shù)都有,當(dāng)時(shí),,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.設(shè)且,則下列不等式成立的是()A. B. C. D.12.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣12二、填空題:本題共4小題,每小題5分,共20分。13.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為__________.14.已知雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,則雙曲線的焦距為______.15.有編號(hào)分別為1,2,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),則取出球的編號(hào)互不相同的概率為_______________.16.平行四邊形中,,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記為數(shù)列的前項(xiàng)和,已知,等比數(shù)列滿足,.(1)求的通項(xiàng)公式;(2)求的前項(xiàng)和.18.(12分)已知函數(shù)(,),且對(duì)任意,都有.(Ⅰ)用含的表達(dá)式表示;(Ⅱ)若存在兩個(gè)極值點(diǎn),,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點(diǎn)的個(gè)數(shù),并說明理由.19.(12分)古人云:“腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國,校園讀書活動(dòng)的熱潮正在興起.某校為統(tǒng)計(jì)學(xué)生一周課外讀書的時(shí)間,從全校學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行問卷調(diào)査,統(tǒng)計(jì)了他們一周課外讀書時(shí)間(單位:)的數(shù)據(jù)如下:一周課外讀書時(shí)間/合計(jì)頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時(shí)間的中位數(shù).(2)如果讀書時(shí)間按,,分組,用分層抽樣的方法從名學(xué)生中抽取20人.①求每層應(yīng)抽取的人數(shù);②若從,中抽出的學(xué)生中再隨機(jī)選取2人,求這2人不在同一層的概率.20.(12分)已知函數(shù)(),且只有一個(gè)零點(diǎn).(1)求實(shí)數(shù)a的值;(2)若,且,證明:.21.(12分)a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點(diǎn),求.22.(10分)橢圓的右焦點(diǎn),過點(diǎn)且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點(diǎn)且斜率不為0的直線與橢圓交于,兩點(diǎn).為坐標(biāo)原點(diǎn),為橢圓的右頂點(diǎn),求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項(xiàng)可求得首項(xiàng),即可求出前n項(xiàng)和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項(xiàng)為,即得,所以或,又即,舍去,,d=-2前項(xiàng)和.故的最大值為.故選:D【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查求前n項(xiàng)和的最值問題,同時(shí)還考查了余弦定理的應(yīng)用.2、C【解析】
分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個(gè)說的是真話,即可求得年紀(jì)最大者,即可求得答案.【詳解】①假設(shè)甲說的是真話,則年紀(jì)最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個(gè)人說的是真話,故甲說的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說的是真話,則年紀(jì)最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個(gè)人說的是真話,故乙說謊,年紀(jì)最大的也不是乙;③假設(shè)丙說的是真話,則年紀(jì)最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個(gè)人說的是真話,故丙在說謊,年紀(jì)最大的也不是乙;④假設(shè)丁說的是真話,則年紀(jì)最大的不是丁,而已知只有一個(gè)人說的是真話,那么甲也說謊,說明甲也不是年紀(jì)最大的,同時(shí)乙也說謊,說明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會(huì)發(fā)生,考查了分析能力和推理能力,屬于中檔題.3、B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點(diǎn)睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.4、C【解析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個(gè)圓柱和一個(gè)長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).5、A【解析】
求出集合M和集合N,,利用集合交集補(bǔ)集的定義進(jìn)行計(jì)算即可.【詳解】,,則,故選:A.【點(diǎn)睛】本題考查集合的交集和補(bǔ)集的運(yùn)算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.6、C【解析】
由開始,按照框圖,依次求出s,進(jìn)行判斷。【詳解】,故選C.【點(diǎn)睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。7、D【解析】
由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯(cuò)點(diǎn)是忽略方程表示雙曲線對(duì)于的范圍的要求.8、B【解析】
復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.9、C【解析】
對(duì)于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對(duì)于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯(cuò)誤的;對(duì)于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對(duì)于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對(duì)于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因?yàn)椋瑒t又由,所以,即,所以②不正確;對(duì)于③中,設(shè)函數(shù),則,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點(diǎn)睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運(yùn)算能力,屬于中檔試題.10、B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當(dāng)時(shí),,又,所以為偶函數(shù),從而等價(jià)于,因此選B.【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.11、A【解析】項(xiàng),由得到,則,故項(xiàng)正確;項(xiàng),當(dāng)時(shí),該不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤.綜上所述,故選.12、D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問題轉(zhuǎn)化為函數(shù)的最值問題.14、1【解析】
由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點(diǎn)睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為”這一條件的運(yùn)用,另外注意題目中要求的焦距即,容易只計(jì)算到,就得到結(jié)論.15、【解析】試題分析:從編號(hào)分別為1,1,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),有種不同的結(jié)果,由于是隨機(jī)取出的,所以每個(gè)結(jié)果出現(xiàn)的可能性是相等的;設(shè)事件為“取出球的編號(hào)互不相同”,則事件包含了個(gè)基本事件,所以.考點(diǎn):1.計(jì)數(shù)原理;1.古典概型.16、【解析】
依題意可得、、、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點(diǎn)共圓,所以因?yàn)?,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點(diǎn)睛】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)時(shí),;當(dāng)時(shí),.【解析】
(1)利用數(shù)列與的關(guān)系,求得;(2)由(1)可得:,,算出公比,利用等比數(shù)列的前項(xiàng)和公式求出.【詳解】(1)當(dāng)時(shí),,當(dāng)時(shí),,因?yàn)檫m合上式,所以.(2)由(1)得,,設(shè)等比數(shù)列的公比為,則,解得,當(dāng)時(shí),,當(dāng)時(shí),.【點(diǎn)睛】本題主要考查數(shù)列與的關(guān)系、等比數(shù)列的通項(xiàng)公式、前項(xiàng)和公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力..18、(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗(yàn)證,可得當(dāng)時(shí),對(duì)任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個(gè)極值點(diǎn),,則須有有兩個(gè)不相等的正數(shù)根,所以或解得或無解,所以的取值范圍,可得,由題意知,令,則.而當(dāng)時(shí),,即,所以在上單調(diào)遞減,所以即時(shí),.(Ⅲ)因?yàn)?,.令得,.由(Ⅱ)知時(shí),的對(duì)稱軸,,,所以.又,可得,此時(shí),在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,所以最多只有三個(gè)不同的零點(diǎn).又因?yàn)?,所以在上遞增,即時(shí),恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個(gè)不同的零點(diǎn):,1,.綜上所述,恰有三個(gè)不同的零點(diǎn).【點(diǎn)睛】利用賦值法求出關(guān)系,利用函數(shù)導(dǎo)數(shù),研究函數(shù)的單調(diào)性,要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù)是近年高考?jí)狠S題的熱點(diǎn).19、(1),,,中位數(shù);(2)①三層中抽取的人數(shù)分別為2,5,13;②【解析】
(1)根據(jù)頻率分布直方表的性質(zhì),即可求得,得到,,再結(jié)合中位數(shù)的計(jì)算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據(jù)抽樣比,求得在三層中抽取的人數(shù);②由①知,設(shè)內(nèi)被抽取的學(xué)生分別為,內(nèi)被抽取的學(xué)生分別為,利用列舉法得到基本事件的總數(shù),利用古典概型的概率計(jì)算公式,即可求解.【詳解】(1)由題意,可得,所以,.設(shè)一周課外讀書時(shí)間的中位數(shù)為小時(shí),則,解得,即一周課外讀書時(shí)間的中位數(shù)約為小時(shí).(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因?yàn)?,,的頻數(shù)分別為20,50,130,所以從,,三層中抽取的人數(shù)分別為2,5,13.②由①知,在,兩層中共抽取7人,設(shè)內(nèi)被抽取的學(xué)生分別為,內(nèi)被抽取的學(xué)生分別為,若從這7人中隨機(jī)抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設(shè)事件為“這2人不在同一層”,由古典概型的概率計(jì)算公式,可得概率為.【點(diǎn)睛】本題主要考查了頻率分布直方表的性質(zhì),中位數(shù)的求解,以及古典概型的概率計(jì)算等知識(shí)的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.20、(1)(2)證明見解析【解析】
(1)求導(dǎo)可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32T-防汛抗旱特征水位核定規(guī)程編制說明
- 海南省??谑?024-2025學(xué)年四年級(jí)(上)期末語文試卷(含答案)
- 2025年社會(huì)服務(wù)行業(yè)投資策略報(bào)告:穩(wěn)舵定錨行致遠(yuǎn)奮楫揚(yáng)帆譜新篇
- 球的表面積和體積課件
- 【大學(xué)課件】單片機(jī)的系統(tǒng)擴(kuò)展
- 經(jīng)濟(jì)學(xué)馬曉蓮課件房地產(chǎn)市場(chǎng)研究分析
- 中國證券市場(chǎng)供需格局及未來發(fā)展趨勢(shì)報(bào)告
- 2025年容積泵項(xiàng)目可行性研究報(bào)告
- 中國陶瓷耐磨磚項(xiàng)目投資可行性研究報(bào)告
- 2025共同出資合作開發(fā)地塊合同模板
- Python數(shù)據(jù)分析與應(yīng)用 課件 第12章 Seaborn
- 初三歷史復(fù)習(xí)備考策略
- 廣東省云浮市(2024年-2025年小學(xué)五年級(jí)語文)人教版期末考試(上學(xué)期)試卷及答案
- 國潮風(fēng)中國風(fēng)2025蛇年大吉蛇年模板
- 《信托知識(shí)培訓(xùn)》課件
- 物業(yè)項(xiàng)目經(jīng)理崗位競聘
- 第8課《蒲柳人家(節(jié)選)》教學(xué)設(shè)計(jì)-2023-2024學(xué)年統(tǒng)編版語文九年級(jí)下冊(cè)
- 幼兒沙池活動(dòng)指導(dǎo)方法
- 2024年冬季校園清雪合同
- 翻譯美學(xué)理論
- 15J403-1-樓梯欄桿欄板(一)
評(píng)論
0/150
提交評(píng)論