版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第09講二次函數(shù)與冪函數(shù)(精講)題型目錄一覽①冪函數(shù)的定義與圖像②冪函數(shù)的性質(zhì)和綜合應用③二次函數(shù)單調(diào)性問題④二次函數(shù)最值問題⑤二次函數(shù)恒成立問題★【文末附錄-冪函數(shù)及冪函數(shù)解題思路思維導圖】一、知識點梳理一、知識點梳理1.冪函數(shù)的定義一般地,SKIPIF1<0(SKIPIF1<0為有理數(shù))的函數(shù),即以\t"/item/%E5%B9%82%E5%87%BD%E6%95%B0/_blank"底數(shù)為\t"/item/%E5%B9%82%E5%87%BD%E6%95%B0/_blank"自變量,冪為\t"/item/%E5%B9%82%E5%87%BD%E6%95%B0/_blank"因變量,\t"/item/%E5%B9%82%E5%87%BD%E6%95%B0/_blank"指數(shù)為常數(shù)的函數(shù)稱為冪函數(shù).2.冪函數(shù)的特征:同時滿足一下三個條件才是冪函數(shù)①SKIPIF1<0的系數(shù)為1; ②SKIPIF1<0的底數(shù)是自變量; ③指數(shù)為常數(shù).(3)冪函數(shù)的圖象和性質(zhì)3.常見的冪函數(shù)圖像及性質(zhì):函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象定義域SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0值域SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0奇偶性奇偶奇非奇非偶奇單調(diào)性在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減公共點SKIPIF1<04.二次函數(shù)的圖像二次函數(shù)SKIPIF1<0的圖像是一條拋物線,二次項系數(shù)a的正負決定圖象的開口方向,對稱軸方程為SKIPIF1<0,頂點坐標為SKIPIF1<0.【常用結(jié)論】1.冪函數(shù)SKIPIF1<0在第一象限內(nèi)圖象的畫法如下:①當SKIPIF1<0時,其圖象可類似SKIPIF1<0畫出;②當SKIPIF1<0時,其圖象可類似SKIPIF1<0畫出;③當SKIPIF1<0時,其圖象可類似SKIPIF1<0畫出.2.實系數(shù)一元二次方程SKIPIF1<0的實根符號與系數(shù)之間的關系(1)方程有兩個不等正根SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)方程有兩個不等負根SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)方程有一正根和一負根,設兩根為SKIPIF1<0SKIPIF1<0SKIPIF1<0二、題型分類精講二、題型分類精講題型一冪函數(shù)的定義與圖像策略方法若冪函數(shù)y=xα(α∈Z)是偶函數(shù),則α必為偶數(shù).當α是分數(shù)時,一般將其先化為根式,再判斷.【典例1】已知冪函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的值為(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設出冪函數(shù)的解析式,根據(jù)已知,求出參數(shù)的關系式,即可計算作答.【詳解】依題意,設SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B【題型訓練】一、單選題1.現(xiàn)有下列函數(shù):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0;⑥SKIPIF1<0;⑦SKIPIF1<0,其中冪函數(shù)的個數(shù)為(
)A.1 B.2 C.3 D.4【答案】B【分析】根據(jù)冪函數(shù)的定義逐個辨析即可【詳解】冪函數(shù)滿足SKIPIF1<0形式,故SKIPIF1<0,SKIPIF1<0滿足條件,共2個故選:B2.已知SKIPIF1<0為冪函數(shù),且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)冪函數(shù)及SKIPIF1<0求其解析式,進而求SKIPIF1<0.【詳解】因為SKIPIF1<0為冪函數(shù),設SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0.故選:B3.下列冪函數(shù)中,定義域為R的冪函數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用分數(shù)指數(shù)式與根式的互化,結(jié)合具體函數(shù)的定義域的求法逐項分析即可求出結(jié)果.【詳解】ASKIPIF1<0,則需要滿足SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故A不符合題意;BSKIPIF1<0,則需要滿足SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故B不符合題意;CSKIPIF1<0,則需要滿足SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故C不符合題意;DSKIPIF1<0,故函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故D正確;故選:D.4.已知冪函數(shù)SKIPIF1<0的圖像過點SKIPIF1<0,則SKIPIF1<0的值域是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】先求出冪函數(shù)解析式,根據(jù)解析式即可求出值域.【詳解】SKIPIF1<0冪函數(shù)SKIPIF1<0的圖像過點SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的值域是SKIPIF1<0.故選:D.5.函數(shù)SKIPIF1<0的圖象大致為(
)A. B.C. D.【答案】C【分析】利用函數(shù)的奇偶性及冪函數(shù)的性質(zhì)進行排除可得答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),排除A,B選項;易知當SKIPIF1<0時,SKIPIF1<0為增函數(shù),且增加幅度較為緩和,所以D不正確.故選:C.6.下列函數(shù)中,其圖像如圖所示的函數(shù)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)函數(shù)的性質(zhì)逐項分析即得.【詳解】由圖象可知函數(shù)為奇函數(shù),定義域為SKIPIF1<0,且在SKIPIF1<0單調(diào)遞減,對于A,SKIPIF1<0,定義域為SKIPIF1<0,SKIPIF1<0,所以函數(shù)為奇函數(shù),在SKIPIF1<0單調(diào)遞減,故A正確;對于B,SKIPIF1<0,定義域為SKIPIF1<0,故B錯誤;對于C,SKIPIF1<0,定義域為SKIPIF1<0,故C錯誤;對于D,SKIPIF1<0,定義域為SKIPIF1<0,SKIPIF1<0,函數(shù)為偶函數(shù),故D錯誤.故選:A.7.如圖所示是函數(shù)SKIPIF1<0(SKIPIF1<0且互質(zhì))的圖象,則(
)A.SKIPIF1<0是奇數(shù)且SKIPIF1<0 B.SKIPIF1<0是偶數(shù),SKIPIF1<0是奇數(shù),且SKIPIF1<0C.SKIPIF1<0是偶數(shù),SKIPIF1<0是奇數(shù),且SKIPIF1<0 D.SKIPIF1<0是偶數(shù),且SKIPIF1<0【答案】C【分析】根據(jù)冪函數(shù)的性質(zhì)及圖象判斷即可;【詳解】解:SKIPIF1<0函數(shù)SKIPIF1<0的圖象關于SKIPIF1<0軸對稱,故SKIPIF1<0為奇數(shù),SKIPIF1<0為偶數(shù),在第一象限內(nèi),函數(shù)是凸函數(shù),故SKIPIF1<0,故選:C.二、填空題8.函數(shù)SKIPIF1<0的定義域為_______.【答案】SKIPIF1<0【解析】將函數(shù)解析式變形為SKIPIF1<0,即可求得原函數(shù)的定義域.【詳解】SKIPIF1<0,所以,SKIPIF1<0.因此,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.故答案為:SKIPIF1<0.9.設集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0/SKIPIF1<0【分析】根據(jù)指數(shù)函數(shù)與冪函數(shù)的性質(zhì),先求出集合A、B,然后根據(jù)交集的定義即可求解.【詳解】解:因為集合SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.10.若函數(shù)SKIPIF1<0的圖像經(jīng)過點SKIPIF1<0與SKIPIF1<0,則m的值為____________.【答案】81【分析】根據(jù)函數(shù)圖象過的點求得參數(shù)SKIPIF1<0,可得函數(shù)解析式,再代入求值即得答案.【詳解】由題意函數(shù)SKIPIF1<0的圖像經(jīng)過點SKIPIF1<0與SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0故SKIPIF1<0,故答案為:8111.冪函數(shù)SKIPIF1<0滿足:任意SKIPIF1<0有SKIPIF1<0,且SKIPIF1<0,請寫出符合上述條件的一個函數(shù)SKIPIF1<0___________.【答案】SKIPIF1<0(答案不唯一)【分析】取SKIPIF1<0,再驗證奇偶性和函數(shù)值即可.【詳解】取SKIPIF1<0,則定義域為R,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0.故答案為:SKIPIF1<0.12.已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0在SKIPIF1<0上不是增函數(shù),則a的一個取值為___________.【答案】-2(答案不唯一,滿足SKIPIF1<0或SKIPIF1<0即可)【分析】作出y=x和y=SKIPIF1<0的圖象,數(shù)形結(jié)合即可得a的范圍,從而得到a的可能取值.【詳解】y=x和y=SKIPIF1<0的圖象如圖所示:∴當SKIPIF1<0或SKIPIF1<0時,y=SKIPIF1<0有部分函數(shù)值比y=x的函數(shù)值小,故當SKIPIF1<0或SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上不是增函數(shù).故答案為:-2.題型二冪函數(shù)的性質(zhì)和綜合應用策略方法(1)緊扣冪函數(shù)SKIPIF1<0的定義、圖像、性質(zhì),特別注意它的單調(diào)性在不等式中的作用,這里注意SKIPIF1<0為奇數(shù)時,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶數(shù)時,SKIPIF1<0為偶函數(shù).(2)若冪函數(shù)y=xα在(0,+∞)上單調(diào)遞增,則α>0;若在(0,+∞)上單調(diào)遞減,則α<0.(3)在比較冪值的大小時,必須結(jié)合冪值的特點,選擇適當?shù)暮瘮?shù),借助其單調(diào)性進行比較.【典例1】函數(shù)SKIPIF1<0同時滿足①對于定義域內(nèi)的任意實數(shù)x,都有SKIPIF1<0;②在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的值為(
)A.8 B.4 C.2 D.1【答案】B【分析】由SKIPIF1<0的值依次求出SKIPIF1<0的值,然后根據(jù)函數(shù)的性質(zhì)確定SKIPIF1<0,得函數(shù)解析式,計算函數(shù)值.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0分別是SKIPIF1<0,在定義域內(nèi)SKIPIF1<0,即SKIPIF1<0是偶函數(shù),因此SKIPIF1<0取值SKIPIF1<0或0,SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上不是減函數(shù),只有SKIPIF1<0滿足,此時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B.【題型訓練】一、單選題1.已知冪函數(shù)SKIPIF1<0為偶函數(shù),則實數(shù)SKIPIF1<0的值為(
)A.3 B.2 C.1 D.1或2【答案】C【分析】由題意利用冪函數(shù)的定義和性質(zhì),得出結(jié)論.【詳解】SKIPIF1<0冪函數(shù)SKIPIF1<0為偶函數(shù),SKIPIF1<0,且SKIPIF1<0為偶數(shù),則實數(shù)SKIPIF1<0,故選:C2.冪函數(shù)SKIPIF1<0SKIPIF1<0的圖象關于SKIPIF1<0軸對稱,且在SKIPIF1<0上是增函數(shù),則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<0【答案】D【分析】分別代入SKIPIF1<0的值,由冪函數(shù)性質(zhì)判斷函數(shù)增減性即可.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,由冪函數(shù)性質(zhì)得,在SKIPIF1<0上是減函數(shù);所以當SKIPIF1<0時,SKIPIF1<0,由冪函數(shù)性質(zhì)得,在SKIPIF1<0上是常函數(shù);所以當SKIPIF1<0時,SKIPIF1<0,由冪函數(shù)性質(zhì)得,圖象關于y軸對稱,在SKIPIF1<0上是增函數(shù);所以當SKIPIF1<0時,SKIPIF1<0,由冪函數(shù)性質(zhì)得,圖象關于y軸對稱,在SKIPIF1<0上是增函數(shù);故選:D.3.已知SKIPIF1<0、SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要【答案】C【分析】利用函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增即可判斷出結(jié)論.【詳解】SKIPIF1<0是奇函數(shù)且為遞增函數(shù),所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,同理,SKIPIF1<0,則SKIPIF1<0,函數(shù)單調(diào)遞增,得SKIPIF1<0;SKIPIF1<0“SKIPIF1<0”是“SKIPIF1<0”的充要條件.故選:C.4.已知冪函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先根據(jù)已知條件求出SKIPIF1<0的解析式,再根據(jù)SKIPIF1<0的單調(diào)性和奇偶性求解即可.【詳解】由題意可知,SKIPIF1<0,解得,SKIPIF1<0,故SKIPIF1<0,易知,SKIPIF1<0為偶函數(shù)且在SKIPIF1<0上單調(diào)遞減,又因為SKIPIF1<0,所以SKIPIF1<0,解得,SKIPIF1<0或SKIPIF1<0.故SKIPIF1<0的取值范圍為SKIPIF1<0.故選:C.5.已知SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用中間值SKIPIF1<0比較a,b的大小,再讓b,c與中間值SKIPIF1<0比較,判斷b,c的大小,即可得解.【詳解】SKIPIF1<0,又因為通過計算知SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B二、多選題6.已知冪函數(shù)SKIPIF1<0的圖象經(jīng)過點SKIPIF1<0,則下列命題正確的有(
).A.函數(shù)SKIPIF1<0的定義域為SKIPIF1<0B.函數(shù)SKIPIF1<0為非奇非偶函數(shù)C.過點SKIPIF1<0且與SKIPIF1<0圖象相切的直線方程為SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】BC【分析】先利用待定系數(shù)法求出冪函數(shù)的解析式,寫出函數(shù)的定義域、判定奇偶性,即判定選項A錯誤、選項B正確;設出切點坐標,利用導數(shù)的幾何意義和過點SKIPIF1<0求出切線方程,進而判定選項C正確;平方作差比較大小,進而判定選項D錯誤.【詳解】設SKIPIF1<0,將點SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,對于A:SKIPIF1<0的定義域為SKIPIF1<0,即選項A錯誤;對于B:因為SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0不具有奇偶性,即選項B正確;對于C:因為SKIPIF1<0,所以SKIPIF1<0,設切點坐標為SKIPIF1<0,則切線斜率為SKIPIF1<0,切線方程為SKIPIF1<0,又因為切線過點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即切線方程為SKIPIF1<0,即SKIPIF1<0,即選項C正確;對于D:當SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0成立,即選項D錯誤.故選:BC.7.已知函數(shù)SKIPIF1<0是冪函數(shù),對任意SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,滿足SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0的值為負值,則下列結(jié)論可能成立的有(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】BC【解析】首先根據(jù)函數(shù)是冪函數(shù),求得SKIPIF1<0的兩個值,然后根據(jù)題意判斷函數(shù)在SKIPIF1<0上是增函數(shù),確定SKIPIF1<0的具體值,再結(jié)合函數(shù)的奇偶性可判斷得正確選項.【詳解】由于函數(shù)SKIPIF1<0為冪函數(shù),故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.由于“對任意SKIPIF1<0,且SKIPIF1<0,滿足SKIPIF1<0”知,函數(shù)在SKIPIF1<0上為增函數(shù),故SKIPIF1<0.易見SKIPIF1<0,故函數(shù)SKIPIF1<0是單調(diào)遞增的奇函數(shù).由于SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,此時,若當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0;當SKIPIF1<0時,由SKIPIF1<0知,SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.綜上可知,SKIPIF1<0,且SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.故選:BC.【點睛】本題解題關鍵是熟知冪函數(shù)定義和性質(zhì)突破參數(shù)m,再綜合應用奇偶性和單調(diào)性的性質(zhì)確定SKIPIF1<0和SKIPIF1<0的符號情況.三、填空題8.已知冪函數(shù)SKIPIF1<0是偶函數(shù),在SKIPIF1<0上遞增的,且滿足SKIPIF1<0.請寫出一個滿足條件的SKIPIF1<0的值,SKIPIF1<0__________.【答案】SKIPIF1<0【分析】結(jié)合偶函數(shù)和單調(diào)性及SKIPIF1<0可得,答案不是唯一的.【詳解】因為SKIPIF1<0,所以SKIPIF1<0;因為SKIPIF1<0在SKIPIF1<0上遞增的,所以SKIPIF1<0;因為冪函數(shù)SKIPIF1<0是偶函數(shù),所以SKIPIF1<0的值可以為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題主要考查冪函數(shù)的性質(zhì),冪函數(shù)的單調(diào)性和奇偶性取決于SKIPIF1<0,側(cè)重考查數(shù)學抽象的核心素養(yǎng).9.已知y=f(x)是奇函數(shù),當x≥0時,SKIPIF1<0,則f(-8)的值是____.【答案】SKIPIF1<0【分析】先求SKIPIF1<0,再根據(jù)奇函數(shù)求SKIPIF1<0【詳解】SKIPIF1<0,因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0故答案為:SKIPIF1<0【點睛】本題考查根據(jù)奇函數(shù)性質(zhì)求函數(shù)值,考查基本分析求解能力,屬基礎題.10.已知函數(shù)SKIPIF1<0,則關于SKIPIF1<0的表達式SKIPIF1<0的解集為__________.【答案】SKIPIF1<0【分析】利用冪函數(shù)的性質(zhì)及函數(shù)的奇偶性和單調(diào)性即可求解.【詳解】由題意可知,SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),由冪函數(shù)的性質(zhì)知,函數(shù)SKIPIF1<0在函數(shù)SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以關于SKIPIF1<0的表達式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題11.已知冪函數(shù)SKIPIF1<0的圖像關于y軸對稱.(1)求SKIPIF1<0的解析式;(2)求函數(shù)SKIPIF1<0在SKIPIF1<0上的值域.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)冪函數(shù)的定義和性質(zhì)求出m的值即可;(2)由(1)求出函數(shù)SKIPIF1<0的解析式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【詳解】(1)因為SKIPIF1<0是冪函數(shù),所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.又SKIPIF1<0的圖像關于y軸對稱,所以SKIPIF1<0,故SKIPIF1<0.(2)由(1)可知,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0.12.已知冪函數(shù)SKIPIF1<0的定義域為R.(1)求實數(shù)SKIPIF1<0的值;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上不單調(diào),求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由冪函數(shù)定義求得參數(shù)SKIPIF1<0值;(2)由二次函數(shù)的單調(diào)性知對稱軸在開區(qū)間SKIPIF1<0上,再由指數(shù)函數(shù)性質(zhì),對數(shù)的定義得結(jié)論.【詳解】(1)由題意SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0;(2)由(1)SKIPIF1<0,SKIPIF1<0的對稱軸SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上不單調(diào),所以SKIPIF1<0,解得SKIPIF1<0.題型三二次函數(shù)單調(diào)性問題策略方法二次函數(shù)單調(diào)性問題的求解策略(1)對于二次函數(shù)的單調(diào)性,關鍵是開口方向與對稱軸的位置,若開口方向或?qū)ΨQ軸的位置不確定,則需要分類討論求解.(2)利用二次函數(shù)的單調(diào)性比較大小,一定要將待比較的兩數(shù)通過二次函數(shù)的對稱性轉(zhuǎn)化到同一單調(diào)區(qū)間上比較.【典例1】“函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充分且必要條件 D.既不充分也不必要條件【答案】C【分析】根據(jù)二次函數(shù)的單調(diào)性以及充分且必要條件的概念可得答案.【詳解】由函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),可得SKIPIF1<0,即SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,得函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),所以“函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)”是“SKIPIF1<0”的充分且必要條件.故選:C【題型訓練】一、單選題1.若二次函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則下列不等式成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】首先根據(jù)SKIPIF1<0,判斷出二次函數(shù)的對稱軸,然后再根據(jù)二次函數(shù)的單調(diào)性即可得出答案.【詳解】因為SKIPIF1<0,所以二次函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:B.2.已知SKIPIF1<0在SKIPIF1<0為單調(diào)函數(shù),則a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出SKIPIF1<0的單調(diào)性,從而得到SKIPIF1<0.【詳解】SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故要想在SKIPIF1<0為單調(diào)函數(shù),需滿足SKIPIF1<0,故選:D3.已知二次函數(shù)SKIPIF1<0的兩個零點都在區(qū)間SKIPIF1<0內(nèi),則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)二次函數(shù)的對稱軸與單調(diào)區(qū)間,結(jié)合已知可得到關于a的不等式,進而求解.【詳解】二次函數(shù)SKIPIF1<0,對稱軸為SKIPIF1<0,開口向上,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,要使二次函數(shù)SKIPIF1<0的兩個零點都在區(qū)間SKIPIF1<0內(nèi),需SKIPIF1<0,解得SKIPIF1<0故實數(shù)a的取值范圍是SKIPIF1<0故選:C4.已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0在R上為減函數(shù),則實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用二次函數(shù)、指數(shù)函數(shù)的單調(diào)性以及函數(shù)單調(diào)性的定義,建立關于a的不等式組,解不等式組即可得答案.【詳解】解:因為函數(shù)SKIPIF1<0在R上為減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)a的取值范圍為SKIPIF1<0,故選:B.二、填空題5.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍為__.【答案】SKIPIF1<0【分析】根據(jù)一元二次函數(shù)單調(diào)性,結(jié)合條件,可知SKIPIF1<0,然后求出SKIPIF1<0的取值范圍即可.【詳解】易知二次函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,又因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.6.若函數(shù)SKIPIF1<0滿足下列性質(zhì):(1)定義域為SKIPIF1<0,值域為SKIPIF1<0;(2)圖象關于直線SKIPIF1<0對稱;(3)對任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0.寫出函數(shù)SKIPIF1<0的一個解析式:_______.【答案】SKIPIF1<0(不唯一)【分析】根據(jù)二次函數(shù)的對稱性、值域及單調(diào)性可得一個符合條件的函數(shù)式.【詳解】由二次函數(shù)的對稱性、值域及單調(diào)性可得解析式SKIPIF1<0,此時SKIPIF1<0對稱軸為SKIPIF1<0,開口向上,滿足(SKIPIF1<0),因為對任意SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,等價于SKIPIF1<0在SKIPIF1<0上單調(diào)減,∴SKIPIF1<0,滿足(SKIPIF1<0),又SKIPIF1<0,滿足(SKIPIF1<0),故答案為:SKIPIF1<0(不唯一).7.若定義在R上的二次函數(shù)f(x)=ax2-4ax+b在區(qū)間[0,2]上是增函數(shù),且f(m)≥f(0),則實數(shù)m的取值范圍是_____________.【答案】[0,4]【分析】可先求出二次函數(shù)的對稱軸SKIPIF1<0,再根據(jù)函數(shù)的增減性及對稱性可求得m的取值范圍.【詳解】二次函數(shù)的對稱軸SKIPIF1<0,SKIPIF1<0時函數(shù)單調(diào)遞增,SKIPIF1<0,二次函數(shù)開口向下,SKIPIF1<0函數(shù)單調(diào)遞減,根據(jù)二次函數(shù)的對稱性,SKIPIF1<0,f(m)≥f(0),SKIPIF1<0【點睛】二次函數(shù)是對稱函數(shù),解題時,一定要根據(jù)對稱性來解題,防止漏解錯解.題型四二次函數(shù)最值問題策略方法二次函數(shù)最值問題的類型及解題思路(1)類型:①對稱軸、區(qū)間都是給定的;②對稱軸動、區(qū)間固定;③對稱軸定、區(qū)間變動.(2)解決這類問題的思路:抓住“三點一軸”數(shù)形結(jié)合,“三點”是指區(qū)間兩個端點和中點,“一軸”指的是對稱軸,結(jié)合配方法,根據(jù)函數(shù)的單調(diào)性及分類討論的思想解決問題.【典例1】若函數(shù)f(x)=ax2+2ax+1在[-1,2]上有最大值4,則a的值為(
)A.SKIPIF1<0 B.-3 C.SKIPIF1<0或-3 D.4【答案】C【分析】按SKIPIF1<0分類討論求SKIPIF1<0的最大值,然后由最大值為4得參數(shù)值.【詳解】由題意得f(x)=a(x+1)2+1-a.①當a=0時,函數(shù)f(x)在區(qū)間[-1,2]上的值為常數(shù)1,不符合題意,舍去;②當a>0時,函數(shù)f(x)在區(qū)間[-1,2]上是增函數(shù),最大值為f(2)=8a+1=4,解得SKIPIF1<0;③當a<0時,函數(shù)f(x)在區(qū)間[-1,2]上是減函數(shù),最大值為f(-1)=1-a=4,解得a=-3.綜上可知,a的值為SKIPIF1<0或-3.故選:C.【題型訓練】一、單選題1.已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.1 B.0 C.SKIPIF1<0 D.2【答案】A【分析】根據(jù)二次函數(shù)性質(zhì)求得最小值,由最小值得SKIPIF1<0值,從而再求得最大值.【詳解】∵SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴其最小值為SKIPIF1<0,∴其最大值為SKIPIF1<0.故選:A.2.已知函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增函數(shù),則實數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求導,由單調(diào)性得到SKIPIF1<0在SKIPIF1<0上恒成立,由二次函數(shù)數(shù)形結(jié)合得到不等關系,求出m的取值范圍.【詳解】SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增函數(shù),所以SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,要滿足SKIPIF1<0①,或SKIPIF1<0②,由①得:SKIPIF1<0,由②得:SKIPIF1<0,綜上:實數(shù)m的取值范圍是SKIPIF1<0.故選:D3.若函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為-1,則SKIPIF1<0(
)A.2或SKIPIF1<0 B.1或SKIPIF1<0 C.2 D.1【答案】D【分析】先求出二次函數(shù)的對稱軸,然后討論對稱軸與區(qū)間SKIPIF1<0的關系,求出其最小值,列方程可求出SKIPIF1<0的值【詳解】函數(shù)SKIPIF1<0圖象的對稱軸為SKIPIF1<0,圖象開口向上,(1)當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,不符合SKIPIF1<0;(2)當SKIPIF1<0時.則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0符合;(3)當SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0不符合,綜上可得SKIPIF1<0.故選:D4.已知二次函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由二次函數(shù)的值域可得出SKIPIF1<0,可得出SKIPIF1<0,則有SKIPIF1<0,利用基本不等式可求得結(jié)果.【詳解】若SKIPIF1<0,則函數(shù)SKIPIF1<0的值域為SKIPIF1<0,不合乎題意,因為二次函數(shù)SKIPIF1<0的值域為SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以,SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,當且僅當SKIPIF1<0時,等號成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故選:B.5.設二次函數(shù)SKIPIF1<0在SKIPIF1<0上有最大值,最大值為SKIPIF1<0,當SKIPIF1<0取最小值時,SKIPIF1<0(
)A.0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)二次函數(shù)的性質(zhì)求出SKIPIF1<0,然后利用基本不等式即得.【詳解】SKIPIF1<0在SKIPIF1<0上有最大值SKIPIF1<0,SKIPIF1<0且當SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0SKIPIF1<0,當且僅當SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0有最小值2,故選:A.二、填空題6.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在最小值,則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】根據(jù)二次函數(shù)的性質(zhì)確定在開區(qū)間SKIPIF1<0內(nèi)存在最小值的情況列不等式,即可得SKIPIF1<0的取值范圍是.【詳解】解:二次函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0,且二次函數(shù)開口向上若函數(shù)在開區(qū)間SKIPIF1<0內(nèi)存在最小值,則SKIPIF1<0,即SKIPIF1<0,此時函數(shù)在SKIPIF1<0處能取到最小值,故SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.7.若函數(shù)SKIPIF1<0的定義域和值域均為SKIPIF1<0,則SKIPIF1<0的值為__________.【答案】SKIPIF1<0【分析】由二次函數(shù)的解析式,可知二次函數(shù)關于SKIPIF1<0成軸對稱,即可得到SKIPIF1<0,從而得到方程組,解得即可.【詳解】解:因為SKIPIF1<0,對稱軸為SKIPIF1<0,開口向上,所以函數(shù)在SKIPIF1<0上單調(diào)遞增,又因為定義域和值域均為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍去)或SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<08.函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)在SKIPIF1<0上的最大值為13,則實數(shù)SKIPIF1<0的值為___________.【答案】SKIPIF1<0或SKIPIF1<0【分析】令SKIPIF1<0,討論SKIPIF1<0或SKIPIF1<0,求出SKIPIF1<0的取值范圍,再利用二次函數(shù)的單調(diào)性即可求解.【詳解】∵SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,其對稱軸為SKIPIF1<0.該二次函數(shù)在SKIPIF1<0上是增函數(shù).①若SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,故當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0(SKIPIF1<0舍去).②若SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,故當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0.∴SKIPIF1<0或SKIPIF1<0(舍去).綜上可得SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.9.設SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0在定義域上滿足:①是非奇非偶函數(shù);②既不是增函數(shù)也不是減函數(shù);③有最大值,則實數(shù)a的取值范圍是__________.【答案】SKIPIF1<0【分析】對①:根據(jù)奇偶函數(shù)的定義可得SKIPIF1<0;對②:分類討論可得二次項系數(shù)小于零,且對稱軸為SKIPIF1<0,求出a的取值范圍;對③:結(jié)合②中所求的范圍驗證即可.【詳解】對①:∵SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0不是奇函數(shù);若SKIPIF1<0是偶函數(shù),則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0;故若SKIPIF1<0是非奇非偶函數(shù),則SKIPIF1<0;對③:若SKIPIF1<0在SKIPIF1<0上有最大值,則有:當SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,無最值,不合題意;當SKIPIF1<0時,則SKIPIF1<0為二次函數(shù)且對稱軸為SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,故若SKIPIF1<0在SKIPIF1<0上有最大值,則SKIPIF1<0;對②:若SKIPIF1<0,則SKIPIF1<0開口向下,且對稱軸為SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上既不是增函數(shù)也不是減函數(shù);綜上所述:實數(shù)a的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.題型五二次函數(shù)恒成立問題策略方法由不等式恒成立求參數(shù)取值范圍的思路及關鍵(1)一般有兩個解題思路:一是分離參數(shù);二是不分離參數(shù).(2)兩種思路都是將問題歸結(jié)為求函數(shù)的最值,至于用哪種方法,關鍵是看參數(shù)是否已分離.這兩個思路的依據(jù)是:a≥f(x)恒成立?a≥f(x)max,a≤f(x)恒成立?a≤f(x)min.2.a(chǎn)x2+bx+c<0(a>0)在區(qū)間[m,n]上恒成立的條件.設f(x)=ax2+bx+c,則eq\b\lc\{\rc\(\a\vs4\al\co1(fm<0,,fn<0.))【典例1】設函數(shù)SKIPIF1<0,若對于SKIPIF1<0,SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍為___________.【答案】SKIPIF1<0【分析】整理可得SKIPIF1<0在SKIPIF1<0上恒成立,根據(jù)x的范圍,可求得SKIPIF1<0的范圍,分析即可得答案.【詳解】由題意,SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度山林承包權聯(lián)合經(jīng)營合同4篇
- 2025年度智慧社區(qū)建設項目承包合同補充協(xié)議4篇
- 2025年度大型水電站PC構(gòu)件吊裝施工合同3篇
- 2025年度事業(yè)單位離職創(chuàng)業(yè)人員創(chuàng)業(yè)項目風險補償基金合作協(xié)議4篇
- 2024版輪流撫養(yǎng)的離婚協(xié)議范本
- 2025年度生態(tài)園區(qū)車位租賃電子合同(含綠色出行)4篇
- 2025年度智能充電樁一體化解決方案購銷合同范本4篇
- 2024綠化施工勞務分包合同范本
- 2025年度智能家居窗簾系統(tǒng)定制安裝合同范本4篇
- 2024面粉公司社區(qū)團購代理銷售合同范本3篇
- 諒解書(標準樣本)
- 2022年浙江省事業(yè)編制招聘考試《計算機專業(yè)基礎知識》真題試卷【1000題】
- 認養(yǎng)一頭牛IPO上市招股書
- GB/T 3767-2016聲學聲壓法測定噪聲源聲功率級和聲能量級反射面上方近似自由場的工程法
- GB/T 23574-2009金屬切削機床油霧濃度的測量方法
- 西班牙語構(gòu)詞.前后綴
- 動物生理學-全套課件(上)
- 河北省衡水市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- DB32-T 2665-2014機動車維修費用結(jié)算規(guī)范-(高清現(xiàn)行)
- 智能消防設備公司市場營銷方案
- 最新6000畝海帶筏式養(yǎng)殖投資建設項目可行性研究報告
評論
0/150
提交評論