新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第45講 拋物線及其性質(zhì)(原卷版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第45講 拋物線及其性質(zhì)(原卷版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第45講 拋物線及其性質(zhì)(原卷版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第45講 拋物線及其性質(zhì)(原卷版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第45講 拋物線及其性質(zhì)(原卷版)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第45講拋物線及其性質(zhì)(精講)題型目錄一覽①拋物線的定義及焦半徑公式的應(yīng)用②拋物線的標(biāo)準(zhǔn)方程③拋物線的性質(zhì)④與拋物線有關(guān)的距離和最值問題一、知識點梳理一、知識點梳理一、拋物線的定義平面內(nèi)與一個定點SKIPIF1<0和一條定直線SKIPIF1<0的距離相等的點的軌跡叫做拋物線,定點SKIPIF1<0叫拋物線的焦點,定直線SKIPIF1<0叫做拋物線的準(zhǔn)線.二、拋物線的方程、圖形及性質(zhì)圖形標(biāo)準(zhǔn)方程SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0頂點SKIPIF1<0范圍SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0對稱軸SKIPIF1<0軸SKIPIF1<0軸焦點SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0離心率SKIPIF1<0準(zhǔn)線方程SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0焦半徑SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0三、拋物線的其他性質(zhì)1.點SKIPIF1<0與拋物線SKIPIF1<0的關(guān)系(1)SKIPIF1<0在拋物線內(nèi)(含焦點)SKIPIF1<0.(2)SKIPIF1<0在拋物線上SKIPIF1<0.(3)SKIPIF1<0在拋物線外SKIPIF1<0.2.焦半徑:拋物線上的點SKIPIF1<0與焦點SKIPIF1<0的距離稱為焦半徑,若SKIPIF1<0,則焦半徑SKIPIF1<0,SKIPIF1<0.3.SKIPIF1<0的幾何意義:SKIPIF1<0為焦點SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離4.焦點弦:①若SKIPIF1<0為拋物線SKIPIF1<0的焦點弦,SKIPIF1<0,SKIPIF1<0,則有以下結(jié)論:(1)SKIPIF1<0.(2)SKIPIF1<0.②焦點弦長公式2:SKIPIF1<0(SKIPIF1<0為直線SKIPIF1<0與對稱軸的夾角).5.拋物線的弦若AB為拋物線SKIPIF1<0的任意一條弦,SKIPIF1<0,弦的中點為SKIPIF1<0,則(1)弦長公式:SKIPIF1<0(2)SKIPIF1<0(3)直線AB的方程為SKIPIF1<0(4)線段AB的垂直平分線方程為SKIPIF1<0【常用結(jié)論】1.切線方程和切點弦方程拋物線SKIPIF1<0的切線方程為SKIPIF1<0,SKIPIF1<0為切點切點弦方程為SKIPIF1<0,點SKIPIF1<0在拋物線外與中點弦平行的直線為SKIPIF1<0,此直線與拋物線相離,點SKIPIF1<0(含焦點)是弦AB的中點,中點弦AB的斜率與這條直線的斜率相等,用點差法也可以得到同樣的結(jié)果.2.拋物線的通徑過焦點且垂直于拋物線對稱軸的弦叫做拋物線的通徑.對于拋物線SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,故拋物線的通徑長為SKIPIF1<0.3.弦的中點坐標(biāo)與弦所在直線的斜率的關(guān)系:SKIPIF1<04.焦點弦的??夹再|(zhì)已知SKIPIF1<0、SKIPIF1<0是過拋物線SKIPIF1<0焦點SKIPIF1<0的弦,SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0是拋物線的準(zhǔn)線,SKIPIF1<0,SKIPIF1<0為垂足.(1)以SKIPIF1<0為直徑的圓必與準(zhǔn)線SKIPIF1<0相切,以AF(或BF)為直徑的圓與y軸相切;(2)SKIPIF1<0,SKIPIF1<0(3)SKIPIF1<0;SKIPIF1<0(4)設(shè)SKIPIF1<0,SKIPIF1<0為垂足,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點在一條直線上二、題型分類精講二、題型分類精講題型一拋物線的定義及焦半徑公式的應(yīng)用策略方法拋物線定義的應(yīng)用(1)利用拋物線的定義解決問題,應(yīng)靈活地進(jìn)行拋物線上的點到焦點的距離與到準(zhǔn)線距離的等價轉(zhuǎn)化.即“看到準(zhǔn)線想到焦點,看到焦點想到準(zhǔn)線”.(2)注意靈活運用拋物線上一點P(x,y)到焦點F的距離|PF|=|x|+eq\f(p,2)或|PF|=|y|+eq\f(p,2).【典例1】(單選題)已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,點SKIPIF1<0在SKIPIF1<0上.若SKIPIF1<0到直線SKIPIF1<0的距離為3,則SKIPIF1<0(

)A.4 B.5 C.6 D.7【典例2】(單選題)O為坐標(biāo)原點,F(xiàn)為拋物線SKIPIF1<0的焦點,M為C上一點,若SKIPIF1<0,則SKIPIF1<0的面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.8【題型訓(xùn)練】一、單選題1.已知拋物線SKIPIF1<0上的點SKIPIF1<0到其焦點的距離為4,則SKIPIF1<0(

)A.1 B.2 C.3 D.42.已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,點SKIPIF1<0在拋物線上,且SKIPIF1<0,則點SKIPIF1<0到SKIPIF1<0軸的距離為(

)A.4 B.SKIPIF1<0 C.SKIPIF1<0 D.33.已知拋物線SKIPIF1<0的焦點為F,SKIPIF1<0是C上一點,SKIPIF1<0,則SKIPIF1<0(

)A.1 B.2 C.3 D.44.)已知SKIPIF1<0的頂點在拋物線SKIPIF1<0上,若拋物線的焦點SKIPIF1<0恰好是SKIPIF1<0的重心,則SKIPIF1<0的值為(

)A.3 B.4 C.5 D.65.已知拋物線C:SKIPIF1<0的頂點為O,經(jīng)過點SKIPIF1<0,且F為拋物線C的焦點,若SKIPIF1<0,則p=(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.26.若拋物線SKIPIF1<0(SKIPIF1<0)上一點SKIPIF1<0到焦點的距離是SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知點SKIPIF1<0是拋物線SKIPIF1<0的焦點,點SKIPIF1<0,且點SKIPIF1<0為拋物線SKIPIF1<0上任意一點,則SKIPIF1<0的最小值為(

)A.5 B.6 C.7 D.88.設(shè)SKIPIF1<0為拋物線SKIPIF1<0的焦點,點SKIPIF1<0在SKIPIF1<0上,點SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的面積為(

)A.1 B.2 C.4 D.SKIPIF1<09.涪江三橋又名綿陽富樂大橋,跨越了涪江和芙蓉溪,是繼東方紅大橋、涪江二橋之后在涪江上修建的第三座大橋,于2004年國慶全線通車.大橋的拱頂可近似地看作拋物線SKIPIF1<0的一段,若有一只鴿子站在拱頂?shù)哪硞€位置,它到拋物線焦點的距離為10米,則鴿子到拱頂?shù)淖罡唿c的距離為(

)A.6 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.已知拋物線SKIPIF1<0的焦點為F,準(zhǔn)線為l,與x軸平行的直線與l和拋物線C分別交于A,B兩點,且SKIPIF1<0,則SKIPIF1<0(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.411.已知直線SKIPIF1<0和直線SKIPIF1<0,拋物線SKIPIF1<0上一動點SKIPIF1<0到直線SKIPIF1<0和SKIPIF1<0距離之和的最小值是(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.312.已知拋物線SKIPIF1<0的焦點為F,點P在C上,若點SKIPIF1<0,則SKIPIF1<0周長的最小值為(

).A.13 B.12 C.10 D.813.若SKIPIF1<0是拋物線SKIPIF1<0的焦點,SKIPIF1<0是拋物線SKIPIF1<0上任意一點,SKIPIF1<0的最小值為1,且SKIPIF1<0是拋物線SKIPIF1<0上兩點,線段SKIPIF1<0的中點到SKIPIF1<0軸的距離為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.已知拋物線C:SKIPIF1<0的焦點為F,SKIPIF1<0,SKIPIF1<0是C上兩點,若SKIPIF1<0則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.215.已知SKIPIF1<0為拋物線SKIPIF1<0的焦點,直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,則SKIPIF1<0的最小值是(

)A.10 B.9 C.8 D.516.)已知拋物線C:SKIPIF1<0的焦點為F,拋物線C的準(zhǔn)線與坐標(biāo)軸相交于點P,點SKIPIF1<0,且SKIPIF1<0的面積為2,若Q是拋物線C上一點,則SKIPIF1<0周長的最小值為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.已知拋物線SKIPIF1<0的焦點為F,點SKIPIF1<0在C的內(nèi)部,若點B是拋物線C上的一個動點,且SKIPIF1<0周長的最小值為SKIPIF1<0,則SKIPIF1<0(

)A.1 B.2 C.3 D.418.設(shè)F為拋物線SKIPIF1<0的焦點,點M在C上,點N在準(zhǔn)線l上,且SKIPIF1<0平行于x軸,準(zhǔn)線l與x軸的交點為E,若SKIPIF1<0,則梯形SKIPIF1<0的面積為(

)A.12 B.6 C.SKIPIF1<0 D.SKIPIF1<019.已知圓SKIPIF1<0與SKIPIF1<0軸相交于E,F(xiàn)兩點,與拋物線SKIPIF1<0相交于A,B兩點,若拋物線SKIPIF1<0的焦點為SKIPIF1<0,直線SKIPIF1<0與拋物線SKIPIF1<0的另一個交點為SKIPIF1<0,則SKIPIF1<0(

)A.2 B.4 C.6 D.820.已知拋物線SKIPIF1<0,圓SKIPIF1<0,若點SKIPIF1<0、SKIPIF1<0分別在SKIPIF1<0、SKIPIF1<0上運動,且設(shè)點SKIPIF1<0,則SKIPIF1<0的最小值為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題21.若拋物線SKIPIF1<0上一點SKIPIF1<0到焦點的距離是它到直線SKIPIF1<0的距離的8倍,則該拋物線的焦點到準(zhǔn)線的距離可以為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<022.(多選)拋物線y2=8x的焦點為F,點P在拋物線上,若|PF|=5,則點P的坐標(biāo)為(

)A.(3,2SKIPIF1<0) B.(3,-2SKIPIF1<0)C.(-3,2SKIPIF1<0) D.(-3,-2SKIPIF1<0)23.已知拋物線C:SKIPIF1<0的焦點為F,準(zhǔn)線為l,點SKIPIF1<0,線段AF交拋物線C于點B,過點B作l的垂線,垂足為H,若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<024.已知拋物線SKIPIF1<0的焦點為SKIPIF1<0為SKIPIF1<0上一點,則下列命題或結(jié)論正確的是(

)A.若SKIPIF1<0與SKIPIF1<0軸垂直,則SKIPIF1<0B.若點SKIPIF1<0的橫坐標(biāo)為2,則SKIPIF1<0C.以SKIPIF1<0為直徑的圓與SKIPIF1<0軸相切D.SKIPIF1<0的最小值為2三、填空題25.設(shè)SKIPIF1<0為拋物線SKIPIF1<0的焦點,點SKIPIF1<0在SKIPIF1<0上,過SKIPIF1<0作SKIPIF1<0軸的垂線,垂足為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.26.已知拋物線SKIPIF1<0上一點SKIPIF1<0到焦點的距離是該點到x軸距離的2倍,則SKIPIF1<0.27.設(shè)P是拋物線SKIPIF1<0上的一個動點,則點P到點SKIPIF1<0的距離與點P到直線SKIPIF1<0的距離之和的最小值為.28.已知拋物線SKIPIF1<0,過其焦點F的直線l與其交與A、B兩點,SKIPIF1<0,其準(zhǔn)線方程為.29.已知點SKIPIF1<0,過拋物線SKIPIF1<0.上一點P作SKIPIF1<0的垂線,垂足為B,若SKIPIF1<0,則SKIPIF1<0.30.已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,過點SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于不同的兩點SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0.31.已知過拋物線SKIPIF1<0的焦點SKIPIF1<0的直線交拋物線于SKIPIF1<0兩點,分別過SKIPIF1<0作準(zhǔn)線的垂線,垂足分別為SKIPIF1<0,準(zhǔn)線與SKIPIF1<0軸交于點SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0.32.已知F是拋物線SKIPIF1<0的焦點,M是C上一點,F(xiàn)M的延長線交y軸于點N,若SKIPIF1<0,則SKIPIF1<033.SKIPIF1<0為拋物線SKIPIF1<0上一點,其中SKIPIF1<0,F(xiàn)為拋物線焦點,直線l方程為SKIPIF1<0,SKIPIF1<0,H為垂足,則SKIPIF1<0.34.拋物線SKIPIF1<0焦點為SKIPIF1<0,準(zhǔn)線上有點SKIPIF1<0是拋物線上一點,SKIPIF1<0為等邊三角形,則SKIPIF1<0點坐標(biāo)為.35.拋物線SKIPIF1<0的焦點為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是拋物線上的兩個動點,且滿足SKIPIF1<0.設(shè)線段SKIPIF1<0的中點SKIPIF1<0在SKIPIF1<0上的投影為SKIPIF1<0,則SKIPIF1<0的最大值是.36.已知點SKIPIF1<0,SKIPIF1<0關(guān)于坐標(biāo)原點SKIPIF1<0對稱,SKIPIF1<0,SKIPIF1<0過點SKIPIF1<0,SKIPIF1<0且與直線SKIPIF1<0相切,若存在定點SKIPIF1<0,使得當(dāng)SKIPIF1<0運動時,SKIPIF1<0為定值,則點SKIPIF1<0的坐標(biāo)為.37.已知點SKIPIF1<0分別是拋物線SKIPIF1<0和圓SKIPIF1<0上的動點,點SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0的最小值為.38.已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,過SKIPIF1<0作拋物線SKIPIF1<0的切線,切點為SKIPIF1<0,SKIPIF1<0,則拋物線SKIPIF1<0上的動點SKIPIF1<0到直線SKIPIF1<0的距離與到SKIPIF1<0軸的距離之和的最小值為.題型二拋物線的標(biāo)準(zhǔn)方程策略方法求拋物線標(biāo)準(zhǔn)方程的方法(1)先定位:根據(jù)焦點或準(zhǔn)線的位置.(2)再定形:即根據(jù)條件求p.【典例1】求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:(1)頂點在原點,準(zhǔn)線方程為SKIPIF1<0;(2)頂點在原點,且過點SKIPIF1<0;(3)頂點在原點,對稱軸為x軸,焦點在直線SKIPIF1<0上;(4)焦點在x軸上,且拋物線上一點SKIPIF1<0到焦點的距離為5.【題型訓(xùn)練】一、單選題1.已知拋物線的準(zhǔn)線方程為SKIPIF1<0,則該拋物線的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,則此拋物線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.拋物線SKIPIF1<0的焦點SKIPIF1<0關(guān)于其準(zhǔn)線對稱的點為SKIPIF1<0,則SKIPIF1<0的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2023·新疆·統(tǒng)考三模)已知拋物線SKIPIF1<0上任意一點到焦點F的距離比到y(tǒng)軸的距離大1,則拋物線的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.若拋物線SKIPIF1<0的焦點到準(zhǔn)線的距離為3,且SKIPIF1<0的開口朝左,則SKIPIF1<0的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.清代青花瓷蓋碗是中國傳統(tǒng)茶文化的器物載體,具有“溫潤”“淡遠(yuǎn)”“清新”的特征.如圖,已知碗體和碗蓋的內(nèi)部均近似為拋物線形狀,碗蓋深為SKIPIF1<0,碗蓋口直徑為SKIPIF1<0,碗體口直徑為SKIPIF1<0,碗體深SKIPIF1<0,則蓋上碗蓋后,碗蓋內(nèi)部最高點到碗底的垂直距離為(碗和碗蓋的厚度忽略不計)(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知SKIPIF1<0為拋物線SKIPIF1<0上第一象限的一點,以點B為圓心且半徑為12的圓經(jīng)過C的焦點F,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.已知拋物線C:SKIPIF1<0焦點為F,準(zhǔn)線為l,點SKIPIF1<0在C上,直線AF與l交于點B,則SKIPIF1<0(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.29.設(shè)點F是拋物線SKIPIF1<0的焦點,l是該拋物線的準(zhǔn)線,過拋物線上一點A作準(zhǔn)線的垂線AB,垂足為B,射線AF交準(zhǔn)線l于點C,若SKIPIF1<0,SKIPIF1<0,則拋物線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<010.已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,點SKIPIF1<0是拋物線SKIPIF1<0上一點,SKIPIF1<0于SKIPIF1<0.若SKIPIF1<0,則拋物線SKIPIF1<0的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011.已知SKIPIF1<0是拋物線SKIPIF1<0的準(zhǔn)線,SKIPIF1<0為SKIPIF1<0的焦點,SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0上的兩點,SKIPIF1<0與SKIPIF1<0軸交于點SKIPIF1<0,且四邊形SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<012.拋物線SKIPIF1<0的焦點是F,點A是該拋物線上一點,O是坐標(biāo)原點,SKIPIF1<0的外接圓的圓心在C上,且該圓周長等于SKIPIF1<0,則p的值是(

)A.6 B.4 C.3 D.213.設(shè)雙曲線SKIPIF1<0的左、右焦點分別為SKIPIF1<0,SKIPIF1<0,O為坐標(biāo)原點.以SKIPIF1<0為直徑的圓與雙曲線的右支交于P點,且以SKIPIF1<0為直徑的圓與直線SKIPIF1<0相切,若SKIPIF1<0,若雙曲線C與拋物線SKIPIF1<0有共同的右焦點SKIPIF1<0,則拋物線的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題14.已知拋物線SKIPIF1<0的焦點在直線SKIPIF1<0上,則拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<015.已知拋物線SKIPIF1<0與直線SKIPIF1<0有公共點,則SKIPIF1<0的值可以是(

)A.2 B.3 C.4 D.516.設(shè)拋物線C:SKIPIF1<0的焦點為F,點M在C上,SKIPIF1<0,若以MF為直徑的圓過點SKIPIF1<0,則拋物線C的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.阿波羅尼奧斯是古希臘著名的數(shù)學(xué)家,與歐幾里得、阿基米德齊名,他的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.其中給出了拋物線一條經(jīng)典的光學(xué)性質(zhì):從焦點發(fā)出的光線,經(jīng)過拋物線上的一點反射后,反射光線平行于拋物線的軸.此性質(zhì)可以解決線段和的最值問題,已知拋物線SKIPIF1<0,SKIPIF1<0是拋物線SKIPIF1<0上的動點,焦點SKIPIF1<0,SKIPIF1<0,下列說法正確的是(

A.SKIPIF1<0的方程為SKIPIF1<0 B.SKIPIF1<0的方程為SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0 D.SKIPIF1<0的最小值為SKIPIF1<0三、填空題18.已知拋物線C經(jīng)過第二象限,且其焦點到準(zhǔn)線的距離大于2,請寫出一個滿足條件的C的標(biāo)準(zhǔn)方程.19.已知拋物線SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,則SKIPIF1<0.20.已知O為坐標(biāo)原點,在拋物線SKIPIF1<0上存在兩點E,F(xiàn),使得SKIPIF1<0是邊長為4的正三角形,則SKIPIF1<0.21.已知拋物線SKIPIF1<0的SKIPIF1<0的準(zhǔn)線與SKIPIF1<0軸交于SKIPIF1<0點,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的焦點,SKIPIF1<0是SKIPIF1<0上一點,SKIPIF1<0,則SKIPIF1<0.22.已知拋物線SKIPIF1<0同時滿足以下三個條件①SKIPIF1<0的頂點在坐標(biāo)原點;②SKIPIF1<0的對稱軸為坐標(biāo)軸;③SKIPIF1<0的焦點SKIPIF1<0在圓SKIPIF1<0上.則SKIPIF1<0的方程為.(寫出一個滿足題意的即可),23.在水平地面豎直定向爆破時,在爆破點炸開的每塊碎片的運動軌跡均可近似看作是拋物線的一部分.這些碎片能達(dá)到的區(qū)域的邊界和該區(qū)域軸截面的交線是拋物線的一部分(如圖中虛線所示),稱該條拋物線為安全拋物線.若某次定向爆破中碎片達(dá)到的最大高度為40米,碎片距離爆炸中心的最遠(yuǎn)水平距離為80米,則這次爆破中,安全拋物線的焦點到其準(zhǔn)線的距離為米.24.已知直線SKIPIF1<0與拋物線SKIPIF1<0:SKIPIF1<0的準(zhǔn)線相交于點A,O為坐標(biāo)原點,若SKIPIF1<0則拋物線的方程為.25.已知拋物線SKIPIF1<0上一點SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0,該點到準(zhǔn)線的距離為6,則該拋物線的標(biāo)準(zhǔn)方程為.26.已知拋物線SKIPIF1<0:SKIPIF1<0的焦點為SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點,SKIPIF1<0的準(zhǔn)線SKIPIF1<0與SKIPIF1<0軸相交于點SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的一點,直線SKIPIF1<0與直線SKIPIF1<0相交于點SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的標(biāo)準(zhǔn)方程為.27.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)著作,第九章“勾股”講述了勾股定理及一些應(yīng)用,將直角三角形的斜邊稱為“弦”,短直角邊稱為“勾”,長直角邊稱為“股”,設(shè)點F是拋物線SKIPIF1<0的焦點.l是該拋物線的準(zhǔn)線,過拋物線上一點A作準(zhǔn)線的垂線AB,垂足為B,射線AF交準(zhǔn)線l于點C,若SKIPIF1<0的“勾”SKIPIF1<0,“股”SKIPIF1<0,則拋物線的方程為.28.已知拋物線SKIPIF1<0:SKIPIF1<0的焦點為SKIPIF1<0,點SKIPIF1<0在SKIPIF1<0軸上,線段SKIPIF1<0的延長線交SKIPIF1<0于點SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.29.已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0軸的垂線交拋物線SKIPIF1<0于點A,且滿足SKIPIF1<0,設(shè)直線SKIPIF1<0交拋物線SKIPIF1<0于另一點SKIPIF1<0,則點SKIPIF1<0的縱坐標(biāo)為.30.已知點SKIPIF1<0,SKIPIF1<0關(guān)于坐標(biāo)原點SKIPIF1<0對稱,SKIPIF1<0,SKIPIF1<0過點SKIPIF1<0,SKIPIF1<0且與直線SKIPIF1<0相切,若存在定點SKIPIF1<0,使得當(dāng)SKIPIF1<0運動時,SKIPIF1<0為定值,則點SKIPIF1<0的坐標(biāo)為.31.焦點為SKIPIF1<0的拋物線SKIPIF1<0上有一點SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點,則滿足SKIPIF1<0的點SKIPIF1<0的坐標(biāo)為.32.已知拋物線C:SKIPIF1<0,O為坐標(biāo)原點,過拋物線的焦點F的直線與拋物線交于A,B兩點(點A在第一象限),且SKIPIF1<0,直線AO交拋物線的準(zhǔn)線于點C,△AOF與△ACB的面積之比為4:9,則p的值為.題型三拋物線的性質(zhì)策略方法拋物線性質(zhì)的應(yīng)用技巧(1)利用拋物線方程確定及應(yīng)用其焦點、準(zhǔn)線時,關(guān)鍵是將拋物線方程化成標(biāo)準(zhǔn)方程.(2)要結(jié)合圖形分析,靈活運用平面圖形的性質(zhì)簡化運算.【典例1】(單選題)下列關(guān)于拋物線SKIPIF1<0的圖象描述正確的是(

)A.開口向上,焦點為SKIPIF1<0 B.開口向右,焦點為SKIPIF1<0C.開口向上,焦點為SKIPIF1<0 D.開口向右,焦點為SKIPIF1<0【題型訓(xùn)練】一、單選題1.拋物線SKIPIF1<0的準(zhǔn)線方程是SKIPIF1<0,則實數(shù)SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.SKIPIF1<02.拋物線有一條重要性質(zhì):從焦點發(fā)出的光線,經(jīng)過拋物線上的一點反射后,反射光線平行于拋物線的對稱軸,反之,平行于拋物線對稱軸的光線,經(jīng)過拋物線上的一點反射后,反射光線經(jīng)過該拋物線的焦點.已知拋物線C:SKIPIF1<0,一條平行于x軸的光線,經(jīng)過點SKIPIF1<0,射向拋物線C的B處,經(jīng)過拋物線C的反射,經(jīng)過拋物線C的焦點F,若SKIPIF1<0,則拋物線C的準(zhǔn)線方程是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.距離拱頂4米時,水面的寬度是8米,則拋物線C的焦點到準(zhǔn)線的距離是(

A.1米 B.2米 C.4米 D.8米4.?dāng)?shù)學(xué)與建筑的結(jié)合造就建筑藝術(shù)品,如吉林大學(xué)的校門是一拋物線形水泥建筑物,如圖.若將該大學(xué)的校門輪廓(忽略水泥建筑的厚度)近似看成拋物線SKIPIF1<0的一部分,且點SKIPIF1<0在該拋物線上,則該拋物線的焦點坐標(biāo)是(

)A.SKIPIF1<0 B.(0,-1) C.SKIPIF1<0 D.SKIPIF1<05.已知SKIPIF1<0為拋物線SKIPIF1<0上一點,點SKIPIF1<0到SKIPIF1<0的焦點的距離為SKIPIF1<0,則SKIPIF1<0的焦點坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知點SKIPIF1<0在圓SKIPIF1<0上,其橫坐標(biāo)為SKIPIF1<0,拋物線SKIPIF1<0經(jīng)過點SKIPIF1<0,則拋物線的準(zhǔn)線方程是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知圓SKIPIF1<0與拋物線SKIPIF1<0相交于M,N,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.48.已知拋物線SKIPIF1<0的焦點F與橢圓SKIPIF1<0的一個焦點重合,則下列說法不正確的是(

)A.橢圓E的焦距是2 B.橢圓E的離心率是SKIPIF1<0C.拋物線C的準(zhǔn)線方程是x=-1 D.拋物線C的焦點到其準(zhǔn)線的距離是49.已知線段AB是拋物線SKIPIF1<0的一條弦,且AB中點M在SKIPIF1<0上,則點A橫坐標(biāo)(

)A.有最大值,無最小值 B.無最大值,有最小值C.無最大值,無最小值 D.有最大值,有最小值10.已知函數(shù)SKIPIF1<0且SKIPIF1<0的圖象過定點SKIPIF1<0,若拋物線SKIPIF1<0也過點SKIPIF1<0,則拋物線的準(zhǔn)線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011.已知點F為拋物線SKIPIF1<0的焦點,點P在拋物線上且橫坐標(biāo)為8,O為坐標(biāo)原點,若△OFP的面積為SKIPIF1<0,則該拋物線的準(zhǔn)線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.焦點為SKIPIF1<0的拋物線SKIPIF1<0上有一點SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點,則滿足SKIPIF1<0的點SKIPIF1<0的坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.過點SKIPIF1<0作拋物線SKIPIF1<0的切線SKIPIF1<0,SKIPIF1<0,切點分別為SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的重心坐標(biāo)為SKIPIF1<0,且P在拋物線SKIPIF1<0上,則SKIPIF1<0的焦點坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0為SKIPIF1<0軸正半軸上一點,線段SKIPIF1<0的垂直平分線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0兩點,若SKIPIF1<0,則四邊形SKIPIF1<0的周長為(

)A.SKIPIF1<0 B.64 C.SKIPIF1<0 D.8015.已知拋物線SKIPIF1<0,以SKIPIF1<0為圓心,半徑為5的圓與拋物線SKIPIF1<0交于SKIPIF1<0兩點,若SKIPIF1<0,則SKIPIF1<0(

)A.4 B.8 C.10 D.1616.已知點SKIPIF1<0分別為拋物線SKIPIF1<0與圓SKIPIF1<0上的動點,且SKIPIF1<0的最小值為SKIPIF1<0,則拋物線SKIPIF1<0的焦點到準(zhǔn)線的距離為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.拋物線SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點,圓心SKIPIF1<0,點SKIPIF1<0為劣弧SKIPIF1<0上不同于SKIPIF1<0、SKIPIF1<0的一個動點,平行于SKIPIF1<0軸的直線SKIPIF1<0交拋物線于點SKIPIF1<0,則SKIPIF1<0的周長的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題18.(多選)對于拋物線上SKIPIF1<0,下列描述正確的是(

)A.開口向上,焦點為SKIPIF1<0 B.開口向上,焦點為SKIPIF1<0C.焦點到準(zhǔn)線的距離為4 D.準(zhǔn)線方程為SKIPIF1<019.設(shè)SKIPIF1<0為拋物線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的焦點,SKIPIF1<0為坐標(biāo)原點,SKIPIF1<0為SKIPIF1<0上一點,且SKIPIF1<0,則(

)A.SKIPIF1<0B.SKIPIF1<0C.直線SKIPIF1<0的斜率為SKIPIF1<0D.SKIPIF1<0的面積為SKIPIF1<020.已知拋物線SKIPIF1<0:SKIPIF1<0的焦點SKIPIF1<0到準(zhǔn)線的距離為2,過點SKIPIF1<0的直線與拋物線交于SKIPIF1<0,SKIPIF1<0兩點,SKIPIF1<0為線段SKIPIF1<0的中點,SKIPIF1<0為坐標(biāo)原點,則下列結(jié)論正確的是(

)A.此拋物線上與焦點SKIPIF1<0的距離等于3的點的坐標(biāo)是SKIPIF1<0B.若SKIPIF1<0,則點SKIPIF1<0到SKIPIF1<0軸的距離為3C.SKIPIF1<0是準(zhǔn)線上一點,SKIPIF1<0是直線SKIPIF1<0與SKIPIF1<0的一個交點,若SKIPIF1<0,則SKIPIF1<0D.SKIPIF1<021.已知拋物線SKIPIF1<0:SKIPIF1<0的焦點SKIPIF1<0在直線SKIPIF1<0上,點SKIPIF1<0在拋物線上,點SKIPIF1<0在準(zhǔn)線SKIPIF1<0上,滿足SKIPIF1<0軸,SKIPIF1<0,則(

)A.SKIPIF1<0 B.直線SKIPIF1<0的傾斜角為SKIPIF1<0C.SKIPIF1<0 D.點SKIPIF1<0的橫坐標(biāo)為SKIPIF1<022.已知拋物線SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點,點SKIPIF1<0為直線SKIPIF1<0上一點,過點SKIPIF1<0作拋物線SKIPIF1<0的兩條切線,切點分別為SKIPIF1<0,SKIPIF1<0,則(

)A.拋物線的準(zhǔn)線方程為SKIPIF1<0 B.直線SKIPIF1<0一定過拋物線的焦點C.線段SKIPIF1<0長的最小值為SKIPIF1<0 D.SKIPIF1<0三、填空題23.若拋物線SKIPIF1<0經(jīng)過點SKIPIF1<0,則其準(zhǔn)線方程是.24.若點SKIPIF1<0在拋物線SKIPIF1<0(a≠0)上,則該拋物線的焦點到其準(zhǔn)線的距離為.25.已知拋物線SKIPIF1<0上一點SKIPIF1<0到其焦點的距離為5,則該拋物線的準(zhǔn)線方程為.26.已知拋物線SKIPIF1<0:SKIPIF1<0恰好經(jīng)過圓SKIPIF1<0:SKIPIF1<0的圓心,則拋物線C的焦點坐標(biāo)為.27.已知SKIPIF1<0為坐標(biāo)原點,拋物線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的焦點為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點,SKIPIF1<0與SKIPIF1<0軸垂直,SKIPIF1<0為SKIPIF1<0軸上一點,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的準(zhǔn)線方程為.28.若三個點SKIPIF1<0中恰有兩個點在拋物線SKIPIF1<0上,則該拋物線的方程為.29.已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,過焦點SKIPIF1<0的直線交拋物線與SKIPIF1<0兩點,且SKIPIF1<0SKIPIF1<0,則拋物線的準(zhǔn)線方程為.30.已知拋物線SKIPIF1<0:SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,與圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,若SKIPIF1<0,則拋物線SKIPIF1<0的準(zhǔn)線方程為.題型四與拋物線有關(guān)的距離和最值問題策略方法拋物線上任意一點到焦點的距離等于到準(zhǔn)線的距離,利用這一定義可以把相等長度的線段進(jìn)行轉(zhuǎn)化,從而把兩條線段長度之和的問題轉(zhuǎn)化為兩點間的距離問題或點到直線的距離問題,即在解題中掌握“拋物線的定義及其性質(zhì)”,若求拋物線上的點到定直線(并非準(zhǔn)線)距離的最值問題用參數(shù)法或切線法求解?!镜淅?】(單選題)已知拋物線SKIPIF1<0的焦點為F,點SKIPIF1<0,若點A為拋物線任意一點,當(dāng)SKIPIF1<0取最小值時,點A的坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(單選題)拋物線SKIPIF1<0的頂點為原點,焦點為SKIPIF1<0,則點SKIPIF1<0到拋物線SKIPIF1<0上動點SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論