2022-2023學(xué)年廣西玉林市福綿區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2022-2023學(xué)年廣西玉林市福綿區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2022-2023學(xué)年廣西玉林市福綿區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2022-2023學(xué)年廣西玉林市福綿區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2022-2023學(xué)年廣西玉林市福綿區(qū)數(shù)學(xué)高三第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-52.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.33.已知是定義在上的奇函數(shù),當(dāng)時,,則()A. B.2 C.3 D.4.設(shè)等差數(shù)列的前n項和為,若,則()A. B. C.7 D.25.已知集合,,則A. B.C. D.6.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.7.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.8.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.89.生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為()A. B. C. D.10.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準(zhǔn)線相切于點,,則拋物線方程為()A. B. C. D.11.已知復(fù)數(shù)z滿足,則在復(fù)平面上對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn).這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機(jī)抽取其中的三張,則抽取的三張卡片編號之和是偶數(shù)的概率為________.14.已知,,求____________.15.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過點C的豎直線的右側(cè),現(xiàn)要在這塊材料上裁出一個直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為______.16.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內(nèi)切圓的圓心的縱坐標(biāo)為,則雙曲線的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).18.(12分)某芯片公司對今年新開發(fā)的一批5G手機(jī)芯片進(jìn)行測評,該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分?jǐn)?shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測試,該手機(jī)公司將每顆芯片分別裝在3個工程手機(jī)中進(jìn)行初測。若3個工程手機(jī)的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;若3個工程手機(jī)中只要有2個評分沒達(dá)到11萬分,則認(rèn)定該芯片不合格;若3個工程手機(jī)中僅1個評分沒有達(dá)到11萬分,則將該芯片再分別置于另外2個工程手機(jī)中進(jìn)行二測,二測時,2個工程手機(jī)的評分都達(dá)到11萬分,則認(rèn)定該芯片合格;2個工程手機(jī)中只要有1個評分沒達(dá)到11萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨立,并且芯片公司對芯片的評分方法及標(biāo)準(zhǔn)與手機(jī)公司對芯片的評分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個工程手機(jī)中的測試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測試,現(xiàn)手機(jī)公司測試部門預(yù)算的測試經(jīng)費(fèi)為10萬元,試問預(yù)算經(jīng)費(fèi)是否足夠測試完這100顆芯片?請說明理由.19.(12分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?附:,0.0500.0100.0013.8416.63510.82820.(12分)在平面直角坐標(biāo)系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當(dāng)與連線的斜率為時,直線的傾斜角為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是以為直徑的圓上的任意一點,求證:21.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.22.(10分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.2、B【解析】

根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.3、A【解析】

由奇函數(shù)定義求出和.【詳解】因為是定義在上的奇函數(shù),.又當(dāng)時,,.故選:A.【點睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.4、B【解析】

根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查等差數(shù)列的性質(zhì)及前項和公式,屬于基礎(chǔ)題.5、D【解析】

因為,,所以,,故選D.6、A【解析】

根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.7、A【解析】

將正四面體補(bǔ)成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補(bǔ)形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.8、A【解析】

由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.9、C【解析】

分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當(dāng)“數(shù)”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點睛】解排列組合問題要遵循兩個原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).10、C【解析】

根據(jù)拋物線方程求得點的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.11、A【解析】

設(shè),由得:,由復(fù)數(shù)相等可得的值,進(jìn)而求出,即可得解.【詳解】設(shè),由得:,即,由復(fù)數(shù)相等可得:,解之得:,則,所以,在復(fù)平面對應(yīng)的點的坐標(biāo)為,在第一象限.故選:A.【點睛】本題考查共軛復(fù)數(shù)的求法,考查對復(fù)數(shù)相等的理解,考查復(fù)數(shù)在復(fù)平面對應(yīng)的點,考查運(yùn)算能力,屬于常考題.12、D【解析】

利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準(zhǔn)基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出所有的基本事件個數(shù),再求出“抽取的三張卡片編號之和是偶數(shù)”這一事件包含的基本事件個數(shù),利用古典概型的概率計算公式即可算出結(jié)果.【詳解】一次隨機(jī)抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數(shù)”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數(shù)”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎(chǔ)題.14、【解析】

求出向量的坐標(biāo),然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可計算出結(jié)果.【詳解】,,,因此,.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查計算能力,屬于基礎(chǔ)題.15、【解析】

分兩種情況討論:(1)斜邊在BC上,設(shè),則,(2)若在若一條直角邊在上,設(shè),則,進(jìn)一步利用導(dǎo)數(shù)的應(yīng)用和三角函數(shù)關(guān)系式恒等變形和函數(shù)單調(diào)性即可求出最大值.【詳解】(1)斜邊在上,設(shè),則,則,,從而.當(dāng)時,此時,符合.(2)若一條直角邊在上,設(shè),則,則,,由知.,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,.當(dāng),即時,最大.故答案為:.【點睛】此題考查實際問題中導(dǎo)數(shù),三角函數(shù)和函數(shù)單調(diào)性的綜合應(yīng)用,注意分類討論把所有情況考慮完全,屬于一般性題目.16、2【解析】

由題意畫出圖形,設(shè)內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質(zhì)結(jié)臺雙曲線的定義,求得的內(nèi)切圓的圓心的縱坐標(biāo),結(jié)合已知列式,即可求得雙曲線的離心率.【詳解】設(shè)內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯(lián)立①②解得:,又因圓心的縱坐標(biāo)為,.故答案為:【點睛】本題考查雙曲線的幾何性質(zhì),考查數(shù)形結(jié)合思想與運(yùn)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】

(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進(jìn)而可得出該函數(shù)的極小值;(3)由當(dāng)時,以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以.所以,.所以曲線在點處的切線為;(2)因為,令,得或.列表如下:0極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當(dāng)時,函數(shù)有極小值;(3)當(dāng)時,,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點個數(shù)為.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程、極值以及利用導(dǎo)數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.18、(1)(2)預(yù)算經(jīng)費(fèi)不夠測試完這100顆芯片,理由見解析【解析】

(1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評測分?jǐn)?shù)的平均數(shù);(2)先求出每顆芯片的測試費(fèi)用的數(shù)學(xué)期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數(shù)為(萬分)(2)由題意可知,手機(jī)公司抽取一顆芯片置于一個工程機(jī)中進(jìn)行檢測評分達(dá)到11萬分的概率.設(shè)每顆芯片的測試費(fèi)用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費(fèi)用的數(shù)學(xué)期望為(元),因為,所以顯然預(yù)算經(jīng)費(fèi)不夠測試完這100顆芯片.【點睛】本題主要考查頻率分布直方圖的平均數(shù)的計算,考查離散型隨機(jī)變量的數(shù)學(xué)期望的計算,意在考查學(xué)生對這些知識的理解掌握水平.19、(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān).【解析】

(1)排序后第10和第11兩個數(shù)的平均數(shù)為中位數(shù);(2)由莖葉圖可得列聯(lián)表;(3)由列聯(lián)表計算可得結(jié)論.【詳解】解:(1).(2)抗倒伏易倒伏矮莖154高莖1016(3)由于,因此可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān).【點睛】本題考查莖葉圖,考查獨立性檢驗,正確認(rèn)識莖葉圖是解題關(guān)鍵.20、(1);(2)詳見解析.【解析】

(1)由短軸長可知,設(shè),,由設(shè)而不求法作差即可求得,將相應(yīng)值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時候,成立,當(dāng)直線斜率存在時,設(shè)出直線方程,與橢圓聯(lián)立,結(jié)合中點坐標(biāo)公式,弦長公式,得到與的關(guān)系,將表示出來,結(jié)合基本不等式求最值,證明最后的結(jié)果【詳解】解:(1)由已知,得由,兩式相減,得根據(jù)已知條件有,當(dāng)時,∴,即∴橢圓的標(biāo)準(zhǔn)方程為(2)當(dāng)直線斜率不存在時,,不等式成立.當(dāng)直線斜率存在時,設(shè)由得∴,∴由化簡,得∴令,則當(dāng)且僅當(dāng)時取等號∴∵∴當(dāng)且僅當(dāng)時取等號綜上,【點睛】本題為直線與橢圓的綜合應(yīng)用,考查了橢圓方程的求法,點差法處理多未知量問題,能夠利用一元二次方程的知識轉(zhuǎn)化處理復(fù)雜的計算形式,要求學(xué)生計算能力過關(guān),為較難題21、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論