版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)集合,,若集合中有且僅有2個元素,則實數(shù)的取值范圍為A. B.C. D.2.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直3.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.4.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.5.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.6.已知定義在上函數(shù)的圖象關(guān)于原點對稱,且,若,則()A.0 B.1 C.673 D.6747.已知數(shù)列為等差數(shù)列,為其前項和,,則()A. B. C. D.8.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)9.復數(shù)(為虛數(shù)單位),則的共軛復數(shù)在復平面上對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.函數(shù)滿足對任意都有成立,且函數(shù)的圖象關(guān)于點對稱,,則的值為()A.0 B.2 C.4 D.111.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.1012.函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.14.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.15.已知復數(shù)z是純虛數(shù),則實數(shù)a=_____,|z|=_____.16.在如圖所示的三角形數(shù)陣中,用表示第行第個數(shù),已知,且當時,每行中的其他各數(shù)均等于其“肩膀”上的兩個數(shù)之和,即,若,則正整數(shù)的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設(shè),求的取值范圍.18.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設(shè)直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.19.(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關(guān)于年份代號的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關(guān)).年份年份代號年利潤(單位:億元)(Ⅰ)求關(guān)于的線性回歸方程,并預測該公司年(年份代號記為)的年利潤;(Ⅱ)當統(tǒng)計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預測的該公司年的年利潤視作該年利潤的實際值,現(xiàn)從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.20.(12分)已知函數(shù).(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數(shù)的定義域和值域.21.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國累計報告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預測2月10日全國累計報告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計公式分別為:,.22.(10分)設(shè)首項為1的正項數(shù)列{an}的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關(guān)系及運算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關(guān)系3、A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.4、C【解析】
根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機變量服從正態(tài)分布,則.5、D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結(jié)合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點坐標公式是解答的關(guān)鍵,著重考查了推理與運算能力.6、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.7、B【解析】
利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項的性質(zhì)可求出的值.【詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【點睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時也考查了等差數(shù)列求和,考查計算能力,屬于基礎(chǔ)題.8、A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數(shù)的性質(zhì);2.分類討論的數(shù)學思想.【思路點睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點一側(cè)的區(qū)間(對奇(偶)函數(shù)而言)或某一周期內(nèi)(對周期函數(shù)而言)考慮,然后推廣到整個定義域上.9、C【解析】
由復數(shù)除法求出,寫出共軛復數(shù),寫出共軛復數(shù)對應(yīng)點坐標即得【詳解】解析:,,對應(yīng)點為,在第三象限.故選:C.【點睛】本題考查復數(shù)的除法運算,共軛復數(shù)的概念,復數(shù)的幾何意義.掌握復數(shù)除法法則是解題關(guān)鍵.10、C【解析】
根據(jù)函數(shù)的圖象關(guān)于點對稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因為函數(shù)的圖象關(guān)于點對稱,所以的圖象關(guān)于原點對稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.11、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構(gòu)建和的方程組求通項公式.12、A【解析】
根據(jù)復合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對復合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復合函數(shù)單調(diào)性同增異減,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎(chǔ)題.14、【解析】
依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學生基本計算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標,是一道有區(qū)分度的壓軸填空題.15、11【解析】
根據(jù)復數(shù)運算法則計算復數(shù)z,根據(jù)復數(shù)的概念和模長公式計算得解.【詳解】復數(shù)z,∵復數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點睛】此題考查復數(shù)的概念和模長計算,根據(jù)復數(shù)是純虛數(shù)建立方程求解,計算模長,關(guān)鍵在于熟練掌握復數(shù)的運算法則.16、2022【解析】
根據(jù)條件先求出數(shù)列的通項,利用累加法進行求解即可.【詳解】,,,下面求數(shù)列的通項,由題意知,,,,,,數(shù)列是遞增數(shù)列,且,的最小值為.故答案為:.【點睛】本題主要考查歸納推理的應(yīng)用,結(jié)合數(shù)列的性質(zhì)求出數(shù)列的通項是解決本題的關(guān)鍵.綜合性較強,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因為,所以,因為,所以,所以.【點睛】本題考查已知三角函數(shù)值求值,考查正弦定理的應(yīng)用.18、(1)(2)或【解析】
(1)根據(jù)題意計算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設(shè),由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【點睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.19、(Ⅰ),該公司年年利潤的預測值為億元;(Ⅱ).【解析】
(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進而可求得關(guān)于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計算出從年至年這年被評為級利潤年的年數(shù),然后利用組合計數(shù)原理結(jié)合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據(jù)表中數(shù)據(jù),計算可得,,,又,,,關(guān)于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預測值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤的估計值分別為、、、、、、、(單位:億元),其中實際利潤大于相應(yīng)估計值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機抽取年,恰有年為級利潤年”的概率為,.【點睛】本題考查利用最小二乘法求回歸直線方程,同時也考查了古典概型概率的計算,涉及組合計數(shù)原理的應(yīng)用,考查計算能力,屬于中等題.20、(Ⅰ)(Ⅱ)函數(shù)的定義域為,值域為【解析】
(1)由為第二象限角及的值,利用同角三角函數(shù)間的基本關(guān)系求出及的值,再代入中即可得到結(jié)果.(2)函數(shù)解析式利用二倍角和輔助角公式將化為一個角的正弦函數(shù),根據(jù)的范圍,即可得到函數(shù)值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數(shù)的定義域為.化簡,得,因為,且,,所以,所以.所以函數(shù)的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)【點睛】本題考查同角三角函數(shù)的基本關(guān)系式,三角函數(shù)函數(shù)值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數(shù)關(guān)系式的問題,意在考查學生的轉(zhuǎn)化能力和計算求解能力,屬于常考題型.21、(1)可以用線性回歸模型擬合與的關(guān)系;(2),預測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關(guān)性越高來判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因為與的相關(guān)近似為0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人搬運水泥合同范例
- 產(chǎn)品購買正式合同范例
- 早餐店面分租合同范例
- 專科師范生合同范例
- 2024年標準型電子產(chǎn)品買賣合同一
- 2024年標準租賃房產(chǎn)經(jīng)營權(quán)益轉(zhuǎn)讓合同一
- 生物醫(yī)療研發(fā)月度總結(jié)
- 2024年電力系統(tǒng)設(shè)計服務(wù)協(xié)議模板版B版
- 2024年版廉華夫妻分手合同版B版
- 2024年版派遣員工勞動協(xié)議標準范例版B版
- JT-T-860.2-2013瀝青混合料改性添加劑第2部分:高黏度添加劑
- 江蘇開放大學本科財務(wù)管理專業(yè)060111馬克思主義基本原理期末試卷
- 2024年4月自考00155中級財務(wù)會計試題及答案
- 商務(wù)英語寫作1(山東聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年山東管理學院
- 細胞生物學智慧樹知到期末考試答案章節(jié)答案2024年中南民族大學
- 2024中國留學生歸國求職洞察報告
- 2024年全國人才流動中心招聘事業(yè)編制人員3人歷年公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 中班音樂《小看戲》課件
- 電大財務(wù)大數(shù)據(jù)分析編程作業(yè)2
- 葡萄糖醛酸在藥物開發(fā)中的應(yīng)用
- 導尿管相關(guān)尿路感染預防與控制技術(shù)指南(試行)-解讀
評論
0/150
提交評論