2022屆江蘇省鎮(zhèn)江市重點中學高三最后一卷數(shù)學試卷含解析_第1頁
2022屆江蘇省鎮(zhèn)江市重點中學高三最后一卷數(shù)學試卷含解析_第2頁
2022屆江蘇省鎮(zhèn)江市重點中學高三最后一卷數(shù)學試卷含解析_第3頁
2022屆江蘇省鎮(zhèn)江市重點中學高三最后一卷數(shù)學試卷含解析_第4頁
2022屆江蘇省鎮(zhèn)江市重點中學高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.2.的展開式中的系數(shù)為()A.5 B.10 C.20 D.303.將函數(shù)的圖象先向右平移個單位長度,在把所得函數(shù)圖象的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點,則的取值范圍是()A. B.C. D.4.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.5.若復數(shù)()是純虛數(shù),則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在平面直角坐標系中,經過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.7.若直線經過拋物線的焦點,則()A. B. C.2 D.8.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.9.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(包括邊界),則A.-3,1 B.-3,5 C.-∞,-310.的展開式中的系數(shù)是()A.160 B.240 C.280 D.32011.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.12.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位二、填空題:本題共4小題,每小題5分,共20分。13.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.14.某城市為了解該市甲、乙兩個旅游景點的游客數(shù)量情況,隨機抽取了這兩個景點20天的游客人數(shù),得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數(shù)在內時,甲景點比乙景點多______天.15.等腰直角三角形內有一點P,,,,,則面積為______.16.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸?shù)穆烦虨镾(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.18.(12分)購買一輛某品牌新能源汽車,在行駛三年后,政府將給予適當金額的購車補貼.某調研機構對擬購買該品牌汽車的消費者,就購車補貼金額的心理預期值進行了抽樣調查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費群體對購車補貼金額的心理預期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費群體中隨機抽取人,記對購車補貼金額的心理預期值高于萬元的人數(shù)為,求的分布列和數(shù)學期望;(3)統(tǒng)計最近個月該品牌汽車的市場銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.19.(12分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示.據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經調查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?20.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.21.(12分)設函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(22.(10分)某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡問卷調查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的人的得分(滿分:分)數(shù)據(jù),統(tǒng)計結果如下表所示.組別頻數(shù)(1)已知此次問卷調查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表),請利用正態(tài)分布的知識求;(2)在(1)的條件下,環(huán)保部門為此次參加問卷調查的市民制定如下獎勵方案.(?。┑梅植坏陀诘目梢垣@贈次隨機話費,得分低于的可以獲贈次隨機話費;(ⅱ)每次贈送的隨機話費和相應的概率如下表.贈送的隨機話費/元概率現(xiàn)市民甲要參加此次問卷調查,記為該市民參加問卷調查獲贈的話費,求的分布列及數(shù)學期望.附:,若,則,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數(shù)形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數(shù)形結合思想的應用,屬于綜合題.數(shù)形結合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數(shù)形結合的思想方法能夠使問題化難為簡,并迎刃而解.2.C【解析】

由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎題.3.A【解析】

根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質,求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點,∴,∴,,解得,又,解得,當k=0時,解,當k=-1時,,可得,.故答案為:A.【點睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數(shù)形結合思想,構建不等關系式,求解可得,屬于較難題.4.B【解析】

由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.5.B【解析】

化簡復數(shù),由它是純虛數(shù),求得,從而確定對應的點的坐標.【詳解】是純虛數(shù),則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數(shù)的除法運算,考查復數(shù)的概念與幾何意義.本題屬于基礎題.6.B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質的應用,屬于基礎題.7.B【解析】

計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.8.D【解析】

以BC的中點為坐標原點,建立直角坐標系,可得,設,運用向量的坐標表示,求得點A的軌跡,進而得到關于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設,由,可得,即,則,當時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標表示,考查轉化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.9.D【解析】

畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內的點(x,y)和定點P(2,-1)設k=y+1x-2,結合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關鍵有兩個:一是根據(jù)數(shù)形結合的方法求解問題,即把y+1x-210.C【解析】

首先把看作為一個整體,進而利用二項展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點睛】本題考查二項展開式指定項的系數(shù),掌握二項展開式的通項是解題的關鍵,屬于基礎題.11.A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.12.A【解析】

運用輔助角公式將兩個函數(shù)公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數(shù)和目標函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.14.72【解析】

根據(jù)給定的莖葉圖,得到游客人數(shù)在內時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數(shù),得到答案.【詳解】由題意,根據(jù)給定的莖葉圖可得,在隨機抽取了這兩個景點20天的游客人數(shù)中,游客人數(shù)在內時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數(shù)在內時,甲景點比乙景點多天.故答案為:.【點睛】本題主要考查了莖葉圖的應用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15.【解析】

利用余弦定理計算,然后根據(jù)平方關系以及三角形面積公式,可得結果.【詳解】設由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點睛】本題主要考查余弦定理解三角形,仔細觀察,細心計算,屬基礎題.16.【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應填答案.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),,.(2)當時,此時選擇火車運輸費最?。划敃r,此時選擇飛機運輸費用最省;當時,此時選擇火車或飛機運輸費用最省.【解析】

(1)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關系得出結論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關系即可,令,故當,即時,,即,此時選擇火車運輸費最省,當,即時,,即,此時選擇飛機運輸費用最省.當,即時,,,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數(shù)的模型,考查了分類討論的思想,屬于基礎題.18.(1)1.7;(2),見解析;(2)2.【解析】

(1)平均數(shù)的估計值為每個小矩形組中值乘以小矩形面積的和;(2)易得,由二項分布列的期望公式計算;(3)利用所給公式計算出回歸直線即可解決.【詳解】(1)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預期值的平均數(shù)的估計值為,所以方差的估計值為;(2)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預期值高于3萬元的頻率為,則,所以的分布列為,數(shù)學期望;(3)將2018年11月至2019年3月的月份數(shù)依次編號為1,2,3,4,5,記,,,,,,由散點圖可知,5組樣本數(shù)據(jù)呈線性相關關系,因為,,,,則,,所以回歸直線方程為,當時,,預計該品牌汽車在年月份的銷售量約為2萬輛.【點睛】本題考查平均數(shù)、方差的估計值、二項分布列及其期望、線性回歸直線方程及其應用,是一個概率與統(tǒng)計的綜合題,本題是一道中檔題.19.(1)30;(2),比較劃算.【解析】

(1)由頻率和為1求出,根據(jù)的值求出保費的平均值,然后解一元一次不等式即可求出結果,最后取近似值即可;(2)分別計算參保與不參保時的期望,,比較大小即可.【詳解】解:(1)由,解得.保險公司每年收取的保費為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購買了此項保險,則的取值為∴(元).②若該老人沒有購買此項保險,則的取值為.∴(元).∴年齡為的該老人購買此項保險比較劃算.【點睛】本題考查學生利用相關統(tǒng)計圖表知識處理實際問題的能力,掌握頻率分布直方圖的基本性質,知道數(shù)學期望是平均數(shù)的另一種數(shù)學語言,為容易題.20.(1),;(2).【解析】

(1)根據(jù)面積公式和數(shù)量積性質求角及最大邊;(2)根據(jù)的長度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論